ترغب بنشر مسار تعليمي؟ اضغط هنا

Monitoring of the thermal neutron flux in the LSM underground laboratory

183   0   0.0 ( 0 )
 نشر من قبل Evgeny Yakushev A
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper describes precise measurements of the thermal neutron flux in the LSM underground laboratory in proximity of the EDELWEISS-II dark matter search experiment together with short measurements at various other locations. Monitoring of the flux of thermal neutrons is accomplished using a mobile detection system with low background proportional counter filled with $^3$He. On average 75 neutrons per day are detected with a background level below 1 count per day (cpd). This provides a unique possibility of a day by day study of variations of the neutron field in a deep underground site. The measured average 4$pi$ neutron flux per cm$^{2}$ in the proximity of EDELWEISS-II is $Phi_{MB}=3.57pm0.05^{stat}pm0.27^{syst}times 10^{-6}$ neutrons/sec. We report the first experimental observation that the point-to-point thermal neutron flux at LSM varies by more than a factor two.



قيم البحث

اقرأ أيضاً

101 - T. Enqvist , A. Mattila , V. Fohr 2005
The cosmic-ray induced muon flux was measured at several depths in the Pyhasalmi mine (Finland) using a plastic scintillator telescope mounted on a trailer. The flux was determined at four different depths underground at 400 m (980 m.w.e), at 660 m ( 1900 m.w.e), at 990 m (2810 m.w.e) and at 1390 m (3960 m.w.e) with the trailer, and also at the ground surface. In addition, previously measured fluxes from depths of 90 m (210 m.w.e) and 210 m (420 m.w.e) are shown. A relation was obtained for the underground muon flux as a function of the depth. The measured flux follows well the general behaviour and is consistent with results determined in other underground laboratories.
China JinPing underground Laboratory (CJPL) is the deepest underground laboratory presently running in the world. In such a deep underground laboratory, the cosmic ray flux is a very important and necessary parameter for rare event experiments. A pla stic scintillator telescope system has been set up to measure the cosmic ray flux. The performance of the telescope system has been studied using the cosmic ray on the ground laboratory near CJPL. Based on the underground experimental data taken from November 2010 to December 2011 in CJPL, which has effective live time of 171 days, the cosmic ray muon flux in CJPL is measured to be (2.0+-0.4)*10^(-10)/(cm^2)/(s). The ultra-low cosmic ray background guarantees CJPLs ideal environment for dark matter experiment.
China Jinping Underground Laboratory (CJPL) is ideal for studying solar-, geo-, and supernova neutrinos. A precise measurement of the cosmic-ray background would play an essential role in proceeding with the R&D research for these MeV-scale neutrino experiments. Using a 1-ton prototype detector for the Jinping Neutrino Experiment (JNE), we detected 264 high-energy muon events from a 645.2-day dataset at the first phase of CJPL (CJPL-I), reconstructed their directions, and measured the cosmic-ray muon flux to be $(3.53pm0.22_{text{stat.}}pm0.07_{text{sys.}})times10^{-10}$ cm$^{-2}$s$^{-1}$. The observed angular distributions indicate the leakage of cosmic-ray muon background and agree with the simulation accounting for Jinping mountains terrain. A survey of muon fluxes at different laboratory locations situated under mountains and below mine shaft indicated that the former is generally a factor of $(4pm2)$ larger than the latter with the same vertical overburden. This study provides a convenient back-of-the-envelope estimation for muon flux of an underground experiment.
Measuring the muon flux is important to the Sanford Underground Laboratory at Homestake, for which several low background experiments are being planned. The nearly-vertical cosmic ray muon flux was measured in three locations at this laboratory: on t he surface (1.149 pm 0.017 x 10^-2 cm^-2 s^-1 sr^-1), at the 800-ft (0.712 km w.e.) level (2.67 pm 0.06 x 10^-6 cm^-2 s^-1 sr^-1), and at the 2000-ft (1.78 km w.e.) level (2.56 pm 0.25 x 10^-7 cm^-2 s^-1 sr^-1). These fluxes agree well with model predictions.
129 - Qiang Du 2017
We report on the measurements of the fluxes and spectra of the environmental fast neutron background at the China Jinping Underground Laboratory (CJPL) with a rock overburden of about 6700 meters water equivalent, using a liquid scintillator detector doped with 0.5% gadolinium. The signature of a prompt nuclear recoil followed by a delayed high energy $gamma$-ray cascade is used to identify neutron events. The large energy deposition of the delayed $gamma$-rays from the $(n, gamma)$ reaction on gadolinium, together with the excellent n-$gamma$ discrimination capability provides a powerful background suppression which allows the measurement of a low intensity neutron flux. The neutron flux of $(1.51pm0.03(stat.)pm0.10(syst.))times10^{-7}$ cm$^{-2}$s$^{-1}$ in the energy range of 1 -- 10 MeV in the Hall A of CJPL was measured based on 356 days of data. In the same energy region, measurement with the same detector placed in a one meter thick polyethylene room gives a significantly lower flux of $(4.9pm0.9(stat.)pm0.5(syst.))times10^{-9}$ cm$^{-2}$s$^{-1}$ with 174 days of data. This represents a measurement of the lowest environmental fast neutron background among the underground laboratories in the world, prior to additional experiment-specific attenuation. Additionally, the fast neutron spectra both in the Hall A and the polyethylene room were reconstructed with the help of GEANT4 simulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا