ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong coupling between single-electron tunneling and nano-mechanical motion

126   0   0.0 ( 0 )
 نشر من قبل Gary Steele
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nanoscale resonators that oscillate at high frequencies are useful in many measurement applications. We studied a high-quality mechanical resonator made from a suspended carbon nanotube driven into motion by applying a periodic radio frequency potential using a nearby antenna. Single-electron charge fluctuations created periodic modulations of the mechanical resonance frequency. A quality factor exceeding 10^5 allows the detection of a shift in resonance frequency caused by the addition of a single-electron charge on the nanotube. Additional evidence for the strong coupling of mechanical motion and electron tunneling is provided by an energy transfer to the electrons causing mechanical damping and unusual nonlinear behavior. We also discovered that a direct current through the nanotube spontaneously drives the mechanical resonator, exerting a force that is coherent with the high-frequency resonant mechanical motion.



قيم البحث

اقرأ أيضاً

We report on the nonlinear coupling between the mechanical modes of a nanotube resonator. The coupling is revealed in a pump-probe experiment where a mode driven by a pump force is shown to modify the motion of a second mode measured with a probe for ce. In a second series of experiments, we actuate the resonator with only one oscillating force. Mechanical resonances feature exotic lineshapes with reproducible dips, peaks, and jumps when the measured mode is commensurate with another mode with a frequency ratio of either 2 or 3. Conventional lineshapes are recovered by detuning the frequency ratio using the voltage on a nearby gate electrode. The exotic lineshapes are attributed to strong coupling between the mechanical modes. The possibility to control the strength of the coupling with the gate voltage holds promise for various experiments, such as quantum manipulation, mechanical signal processing, and the study of the quantum-toclassical transition.
80 - A.D. Armour 2003
We analyze the dynamics of a nano-mechanical resonator coupled to a single-electron transistor (SET) in the regime where the resonator behaves classically. A master equation is derived describing the dynamics of the coupled system which is then used to obtain equations of motion for the average charge state of the SET and the average position of the resonator. We show that the action of the SET on the resonator is very similar to that of a thermal bath, as it leads to a steady-state probability-distribution for the resonator which can be described by mean values of the resonator position, a renormalized frequency, an effective temperature and an intrinsic damping constant. Including the effects of extrinsic damping and finite temperature, we find that there remain experimentally accessible regimes where the intrinsic damping of the resonator still dominates its behavior. We also obtain the average current through the SET as a function of the coupling to the resonator.
We present a microelectromechanical system, in which a silicon beam is attached to a comb-drive actuator, that is used to tune the tension in the silicon beam, and thus its resonance frequency. By measuring the resonance frequencies of the system, we show that the comb-drive actuator and the silicon beam behave as two strongly coupled resonators. Interestingly, the effective coupling rate (~ 1.5 MHz) is tunable with the comb-drive actuator (+10%) as well as with a side-gate (-10%) placed close to the silicon beam. In contrast, the effective spring constant of the system is insensitive to either of them and changes only by $pm$ 0.5%. Finally, we show that the comb-drive actuator can be used to switch between different coupling rates with a frequency of at least 10 kHz.
334 - J. Barnas , I. Weymann 2008
An important consequence of the discovery of giant magnetoresistance in metallic magnetic multilayers is a broad interest in spin dependent effects in electronic transport through magnetic nanostructures. An example of such systems are tunnel junctio ns -- single-barrier planar junctions or more complex ones. In this review we present and discuss recent theoretical results on electron and spin transport through ferromagnetic mesoscopic junctions including two or more barriers. Such systems are also called ferromagnetic single-electron transistors. We start from the situation when the central part of a device has the form of a magnetic (or nonmagnetic) metallic nanoparticle. Transport characteristics reveal then single-electron charging effects, including the Coulomb staircase, Coulomb blockade, and Coulomb oscillations. Single-electron ferromagnetic transistors based on semiconductor quantum dots and large molecules (especially carbon nanotubes) are also considered. The main emphasis is placed on the spin effects due to spin-dependent tunnelling through the barriers, which gives rise to spin accumulation and tunnel magnetoresistance. Spin effects also occur in the current-voltage characteristics, (differential) conductance, shot noise, and others. Transport characteristics in the two limiting situations of weak and strong coupling are of particular interest. In the former case we distinguish between the sequential tunnelling and cotunneling regimes. In the strong coupling regime we concentrate on the Kondo phenomenon, which in the case of transport through quantum dots or molecules leads to an enhanced conductance and to a pronounced zero-bias Kondo peak in the differential conductance.
Circuit quantum electrodynamics allows one to probe, manipulate and couple superconducting quantum bits using cavity photons at an exquisite level. One of its cornerstones is the possibility to achieve the strong coupling which allows one to hybridiz e coherently light and matter. Its transposition to quantum dot circuits could offer the opportunity to use new degrees of freedom such as individual charge or spin. However, the strong coupling of quantum dot circuits to cavity photons remains to be observed. Here, we demonstrate a hybrid superconductor-quantum dot circuit which realizes the strong coupling of an individual electronic excitation to microwave photons. We observe a vacuum Rabi splitting 2g~10 MHz which exceeds by a factor of 3 the linewidth of the hybridized light-matter states. Our findings open the path to ultra-long distance entanglement of quantum dot based qubits. They could be adapted to many other circuit designs, shedding new light on the roadmap for scalability of quantum dot setups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا