We study the elastic response of composites of rods embedded in elastic media. We calculate the micro-mechanical response functions, and bulk elastic constants as functions of rod density. We find two fixed points for Poissons ratio with respect to the addition of rods in 3D composites: there is an unstable fixed point for Poissons ratio=1/2 (an incompressible system) and a stable fixed point for Poissons ratio=1/4 (a compressible system). We also derive an approximate expression for the elastic constants for arbitrary rod density that yields exact results for both low and high density. These results may help to explain recent experiments [Physical Review Letters 102, 188303 (2009)] that reported compressibility for composites of microtubules in F-actin networks.