ترغب بنشر مسار تعليمي؟ اضغط هنا

Curie temperature versus hole concentration in field-effect structures of Ga1-xMnxAs

240   0   0.0 ( 0 )
 نشر من قبل Yu Nishitani
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Curie temperature TC is investigated as a function of the hole concentration p in thin films of ferromagnetic semiconductor (Ga,Mn)As. The magnetic properties are probed by transport measurements and p is varied by the application of an external electric field in a field-effect transistor configuration. It is found that TC is proportional to p^{gamma}, where the exponent gamma = 0.19 pm 0.02 over a wide range of Mn compositions and channel thicknesses. The magnitude of gamma is reproduced by a p-d Zener model taking into account nonuniform hole distribution along the growth direction, determined by interface states and the applied gate electric fields.



قيم البحث

اقرأ أيضاً

High- and low-field magneto-transport measurements, as well as SQUID measurements of magnetization, were carried out on Ga1-xMnxAs epilayers grown by low temperature molecular beam epitaxy, and subsequently annealed under various conditions. We obser ve a large enhancement of ferromagnetism when the samples are annealed at an optimal temperature, typically about 280 0C. Such optimal annealing leads to an increase of Curie temperature, accompanied by an increase of both the conductivity and the saturation magnetization. A decrease of the coercive field and of magnetoresistivity is also observed for Ga1-xMnxAs annealed at optimal conditions. We suggest that the experimental results reported in this paper are related to changes in the domain structure of Ga1-xMnxAs.
Specific heat measurements were used to study the magnetic phase transition in Ga1-xMnxAs. Two different types of Ga1-xMnxAs samples have been investigated. The sample with a Mn concentration of 1.6% shows insulating behavior, and the sample with a M n concentration of 2.6% is metallic. The temperature dependence of the specific heat for both samples reveals a pronounced lambda-shaped peak near the Curie temperature, which indicates a second-order phase transition in these samples. The critical behavior of the specific heat for Ga1-xMnxAs samples is consistent with the mean-field behavior with Gaussian fluctuations of the magnetization in the close vicinity of TC.
371 - K. F. Eid , M. B. Stone , K. C. Ku 2003
We demonstrate the exchange coupling of a ferromagnetic semiconductor (Ga1-xMnxAs) with an overgrown antiferromagnet (MnO). Unlike most conventional exchange biased systems, the blocking temperature of the antiferromagnet (T_B = 48 +- 2 K) and the Cu rie temperature of the ferromagnet (T_C = 55.1 +- 0.2 K) are comparable. The resulting exchange bias manifests itself as a clear shift in the magnetization hysteresis loop when the bilayer is cooled in the presence of an applied magnetic field and an enhancement of the coercive field.
98 - A. Koeder , S. Frank , W. Schoch 2002
We report on detailed investigations of the electronic and magnetic properties of ferromagnetic GaMnAs layers, which have been fabricated by low-temperature molecular-beam epitaxy. Superconducting quantum interference device measurements reveal a dec rease of the Curie temperature from the surface to the GaMnAs/GaAs interface. While high resolution x-ray diffraction clearly shows a homogeneous Mn distribution, a pronounced decrease of the carrier concentration from the surface towards the GaMnAs/GaAs interface has been found by Raman spectroscopy as well as electrochemical capacitance-voltage profiling. The gradient in Curie temperature seems to be a general feature of GaMnAs layers grown at low-temperature. Possible explanations are discussed.
289 - H.K. Choi , W.O. Lee , Y.S. OH 2006
We report on the anomalous Hall coefficient and longitudinal resistivity scaling relationships on a series of annealed Ga1-xMnxAs epilayers (x~0.055). As-grown samples exhibit scaling parameter n of ~ 1. Near the optimal annealing temperature, we fin d n ~ 2 to be consistent with recent theories on the intrinsic origins of anomalous Hall Effect in Ga1-xMnxAs. For annealing temperatures far above the optimum, we note n > 3, similar behavior to certain inhomogeneous systems. This observation of atypical behavior agrees well with characteristic features attributable to spherical resonance from metallic inclusions from optical spectroscopy measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا