We identify 806 ultra-cool dwarfs from their SDSS riz photometry (of which 34 are newly discovered L dwarfs) and obtain proper motions through cross matching with UKIDSS and 2MASS. Proper motion and distance constraints show that nine of our ultra-cool dwarfs are members of widely separated binary systems; SDSS 0101 (K5V+M9.5V), SDSS 0207 (M1.5V+L3V), SDSS 0832 (K3III+L3.5V), SDSS 0858 (M4V+L0V), SDSS 0953 (M4V+M9.5V), SDSS 0956 (M2V+M9V), SDSS 1304 (M4.5V+L0V), SDSS 1631 (M5.5V+M8V), SDSS 1638 (M4V+L0V). One of these (SDSS 0832) is shown to be a companion to the bright K3 giant Eta Cancri. Such primaries can provide age and metallicity constraints for any companion objects, yielding excellent benchmark objects. Eta Cancri AB is the first wide ultra-cool dwarf + giant binary system identified. We present new observations and analysis that constrain the metallicity of Eta Cancri A to be near solar, and use recent evolutionary models to constrain the age of the giant to be 2.2-6.1 Gyr. If Eta Cancri B is a single object, we estimate its physical attributes to be; mass = 63-82 M_Jup, T_eff = 1800+/-150 K, log g = 5.3-5.5, [M/H] = 0.0+/-0.1. Its colours are non typical when compared to other ultra-cool dwarfs, and we also assess the possibility that Eta Cancri B is itself an unresolved binary, showing that the combined light of an L4 + T4 system could provide a reasonable explanation for its colours.