ترغب بنشر مسار تعليمي؟ اضغط هنا

Dipolar condensates confined in a toroidal trap: ground state and vortices

123   0   0.0 ( 0 )
 نشر من قبل Marta Abad
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a Bose-Einstein condensate of 52Cr atoms confined in a toroidal trap with a variable strength of s-wave contact interactions. We analyze the effects of the anisotropic nature of the dipolar interaction by considering the magnetization axis to be perpendicular to the trap symmetry axis. In the absence of a central repulsive barrier, when the trap is purely harmonic, the effect of reducing the scattering length is a tuning of the geometry of the system: from a pancake-shaped condensate when it is large, to a cigar-shaped condensate for small scattering lengths. For a condensate in a toroidal trap, the interaction in combination with the central repulsive Gaussian barrier produces an azimuthal dependence of the particle density for a fixed radial distance. We find that along the magnetization direction the density decreases as the scattering length is reduced but presents two symmetric density peaks in the perpendicular axis. For even lower values of the scattering length we observe that the system undergoes a dipolar-induced symmetry breaking phenomenon. The whole density becomes concentrated in one of the peaks, resembling an origin-displaced cigar-shaped condensate. In this context we also analyze stationary vortex states and their associated velocity field, finding that this latter also shows a strong azimuthal dependence for small scattering lengths. The expectation value of the angular momentum along the z direction provides a qualitative measure of the difference between the velocity in the different density peaks.



قيم البحث

اقرأ أيضاً

170 - M. Abad , M. Guilleumas , R. Mayol 2009
We present full three-dimensional numerical calculations of single vortex states in rotating dipolar condensates. We consider a Bose-Einstein condensate of 52Cr atoms with dipole-dipole and s-wave contact interactions confined in an axially symmetric harmonic trap. We obtain the vortex states by numerically solving the Gross-Pitaevskii equation in the rotating frame with no further approximations. We investigate the properties of a single vortex and calculate the critical angular velocity for different values of the s-wave scattering length. We show that, whereas the standard variational approach breaks down in the limit of pure dipolar interactions, exact solutions of the Gross-Pitaevskii equation can be obtained for values of the s-wave scattering length down to zero. The energy barrier for the nucleation of a vortex is calculated as a function of the vortex displacement from the rotation axis for different values of the angular velocity of the rotating trap.
130 - Yong-Chang Zhang , Thomas Pohl , 2021
Dipolar Bose-Einstein condensates represent a powerful platform for the exploration of quantum many-body phenomena arising from long-range interactions. A series of recent experiments has demonstrated the formation of supersolid states of matter. Sub sequent theoretical works have shown that quantum fluctuations can affect the underlying phase transition and may lead to the emergence of supersolids with various lattice structures in dipolar condensates. In this work we explore the signatures of such different geometries in confined finite condensates. In addition to previously found triangular lattices, our analysis reveals a rich spectrum of states, from honeycomb patterns and ring structures to striped supersolids. By optimizing relevant parameters we show that transitions between distinct supersolids should be observable in current experiments.
Vortices are expected to exist in a supersolid but experimentally their detection can be difficult because the vortex cores are localized at positions where the local density is very low. We address here this problem by performing numerical simulatio ns of a dipolar Bose-Einstein Condensate (BEC) in a pancake confinement at $T=0$ K and study the effect of quantized vorticity on the phases that can be realized depending upon the ratio between dipolar and short-range interaction. By increasing this ratio the system undergoes a spontaneous density modulation in the form of an ordered arrangement of multi-atom droplets. This modulated phase can be either a supersolid (SS) or a normal solid (NS). In the SS state droplets are immersed in a background of low-density superfluid and the system has a finite global superfluid fraction resulting in non-classical rotational inertia. In the NS state no such superfluid background is present and the global superfluid fraction vanishes. We propose here a protocol to create vortices in modulated phases of dipolar BEC by freezing into such phases a vortex-hosting superfluid (SF) state. The resulting system, depending upon the interactions strengths, can be either a SS or a NS To discriminate between these two possible outcome of a freezing experiment, we show that upon releasing of the radial harmonic confinement, the expanding vortex-hosting SS shows tell-tale quantum interference effects which display the symmetry of the vortex lattice of the originating SF, as opposed to the behavior of the NS which shows instead a ballistic radial expansion of the individual droplets. Such markedly different behavior might be used to prove the supersolid character of rotating dipolar condensates.
We study a quasispin-$1/2$ Bose-Einstein condensate with synthetically generated spin-orbit coupling in a toroidal trap, and show that the system has a rich variety of ground and metastable states. As the central hole region increases, i.e., the pote ntial changes from harmonic-like to ring-like, the condensate exhibits a variety of structures, such as triangular stripes, flower-petal patterns, and counter-circling states. We also show that the rotating systems have exotic vortex configurations. In the limit of a quasi-one dimensional ring, the quantum many-body ground state is obtained, which is found to be the fragmented condensate.
We consider a quantum impurity immersed in a dipolar Bose Einstein condensate and study the properties of the emerging polaron. We calculate the energy, effective mass and quasi-particle residue of the dipolar polaron and investigate their behaviour with respect to the strength of zero-range contact and a long-range dipolar interactions among the condensate atoms and with the impurity. While quantum fluctuations in the case of pure contact interactions typically lead to an increase of the polaron energy, dipole-dipole interactions are shown to cause a sign reversal. The described signatures of dipolar interactions are shown to be observable with current experimental capabilities based on quantum gases of atoms with large magnetic dipole moments such as Erbium or Dysprosium condensates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا