ترغب بنشر مسار تعليمي؟ اضغط هنا

Atmospheric parameters and rotational velocities for a sample of Galactic B-type supergiants

178   0   0.0 ( 0 )
 نشر من قبل Morgan Fraser
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Fraser




اسأل ChatGPT حول البحث

High resolution optical spectra of 57 Galactic B-type supergiant stars have been analyzed to determine their rotational and macroturbulent velocities. In addition, their atmospheric parameters (effective temperature, surface gravity and microturbulent velocity) and surface nitrogen abundances have been estimated using a non-LTE grid of model atmospheres. Comparisons of the projected rotational velocities have been made with the predictions of stellar evolutionary models and in general good agreement was found. However for a small number of targets, their observed rotational velocities were significantly larger than predicted, although their nitrogen abundances were consistent with the rest of the sample. We conclude that binarity may have played a role in generating their large rotational velocities. No correlation was found between nitrogen abundances and the current projected rotational velocities. However a correlation was found with the inferred projected rotational velocities of the main sequence precursors of our supergiant sample. This correlation is again in agreement with the predictions of single star evolutionary models that incorporate rotational mixing. The origin of the macroturbulent and microturbulent velocity fields is discussed and our results support previous theoretical studies that link the former to sub-photospheric convection and the latter to non-radial gravity mode oscillations. In addition, we have attempted to identify differential rotation in our most rapidly rotating targets.



قيم البحث

اقرأ أيضاً

High-resolution spectra for 24 SMC and Galactic B-type supergiants have been analysed to estimate the contributions of both macroturbulence and rotation to the broadening of their metal lines. Two different methodologies are considered, viz. goodness -of-fit comparisons between observed and theoretical line profiles and identifying zeros in the Fourier transforms of the observed profiles. The advantages and limitations of the two methods are briefly discussed with the latter techniques being adopted for estimated projected rotational velocities (vsini) but the former being used to estimate macroturbulent velocities. Only one SMC supergiant, SK 191, shows a significant degree of rotational broadening (vsini $simeq$ 90 kms). For the remaining targets, the distribution of projected rotational velocities are similar in both our Galactic and SMC samples with larger values being found at earlier spectral types. There is marginal evidence for the projected rotational velocities in the SMC being higher than those in the Galactic targets but any differences are only of the order of 5-10 kms, whilst evolutionary models predict differences in this effective temperature range of typically 20 to 70 kms. The combined sample is consistent with a linear variation of projected rotational velocity with effective temperature, which would imply rotational velocities for supergiants of 70 kms at an effective temperature of 28 000 K (approximately B0 spectral type) decreasing to 32 kms at 12 000 K (B8 spectral type). For all targets, the macroturbulent broadening would appear to be consistent with a Gaussian distribution (although other distributions cannot be discounted) with an $frac{1}{e}$ half-width varying from approximately 20 kms at B8 to 60 kms at B0 spectral types.
Spectroscopy for 247 stars towards the young cluster NGC 346 in the Small Magellanic Cloud has been combined with that for 116 targets from the VLT-FLAMES Survey of Massive Stars. Spectral classification yields a sample of 47 O-type and 287 B-type sp ectra, while radial-velocity variations and/or spectral multiplicity have been used to identify 45 candidate single-lined systems, 17 double-lined systems, and one triple-lined system. Atmospheric parameters (T$_eff$ and log$g$) and projected rotational velocities ($v_e$sin$i$) have been estimated using TLUSTY model atmospheres; independent estimates of $v_e$sin$i$ were also obtained using a Fourier Transform method. Luminosities have been inferred from stellar apparent magnitudes and used in conjunction with the T$_eff$ and $v_e$sin$i$ estimates to constrain stellar masses and ages using the BONNSAI package. We find that targets towards the inner region of NGC 346 have higher median masses and projected rotational velocities, together with smaller median ages than the rest of the sample. There appears to be a population of very young targets with ages of less than 2 Myr, which have presumably all formed within the cluster. The more massive targets are found to have lower $v_e$sin$i$ consistent with previous studies. No significant evidence is found for differences with metallicity in the stellar rotational velocities of early-type stars, although the targets in the SMC may rotate faster than those in young Galactic clusters. The rotational velocity distribution for single non-supergiant B-type stars is inferred and implies that a significant number have low rotational velocity ($simeq$10% with $v_e$<40 km/s), together with a peak in the probability distribution at $v_e simeq$300 km/s. Larger projected rotational velocity estimates have been found for our Be-type sample and imply that most have rotational velocities between 200-450 km/s.
Massive stars play a key role in the evolution of the Universe. Our goal is to compare observed and predicted properties of single Galactic O stars to identify and constrain uncertain physical parameters and processes in stellar evolution and atmosph ere models. We used a sample of 53 objects with spectral types from O3 to O9.7. For 30 of these, we determined the main photospheric and wind parameters, using optical spectroscopy and applying the FASTWIND code. For the remaining objects, literature data, obtained by means of the CMFGEN code, were used instead. The properties of our sample were compared to published predictions based on two grids evolution models that include rotationally induced mixing. Within each luminosity class, we find a close correlation of N surface abundance and luminosity, and a stronger N enrichment in more massive and evolved O stars. Additionally, a correlation of the surface nitrogen and helium abundances is observed. The large number of nitrogen-enriched stars above ~30 solar masses argues for rotationally induced mixing as the most likely explanation. However, none of the considered models can match the observed trends correctly, especially in the high mass regime. We confirm mass discrepancy for objects in the low mass O-star regime. We conclude that the rotationally induced mixing of helium to the stellar surface is too strong in some of the models. We also suggest that present inadequacies of the models to represent the N enrichment in more massive stars with relatively slow rotation might be related to problematic efficiencies of rotational mixing. We are left with a picture in which invoking binarity and magnetic fields is required to achieve a more complete agreement of the observed surface properties of a population of massive main- sequence stars with corresponding evolutionary models.
Aims: Projected rotational velocities (vsini) have been estimated for 334 targets in the VLT-FLAMES Tarantula survey that do not manifest significant radial velocity variations and are not supergiants. They have spectral types from approximately O9.5 to B3. The estimates have been analysed to infer the underlying rotational velocity distribution, which is critical for understanding the evolution of massive stars. Methods: Projected rotational velocities were deduced from the Fourier transforms of spectral lines, with upper limits also being obtained from profile fitting. For the narrower lined stars, metal and non-diffuse helium lines were adopted, and for the broader lined stars, both non-diffuse and diffuse helium lines; the estimates obtained using the different sets of lines are in good agreement. The uncertainty in the mean estimates is typically 4% for most targets. The iterative deconvolution procedure of Lucy has been used to deduce the probability density distribution of the rotational velocities. Results: Projected rotational velocities range up to approximately 450 kms and show a bi-modal structure. This is also present in the inferred rotational velocity distribution with 25% of the sample having $0leq$ve$leq$100,kms and the high velocity component having ve$sim 250$,kms. There is no evidence from the spatial and radial velocity distributions of the two components that they represent either field and cluster populations or different episodes of star formation. Be-type stars have also been identified. Conclusions: The bi-modal rotational velocity distribution in our sample resembles that found for late-B and early-A type stars. While magnetic braking appears to be a possible mechanism for producing the low-velocity component, we can not rule out alternative explanations.
We report the results of a long-term spectroscopic monitoring of the A-type supergiant with the B[e] phenomenon 3 Pup = HD 62623. We confirm earlier findings that it is a binary system. The orbital parameters were derived using cross-correlation of t he spectra in a range of 4460-4632 A, which contains over 30 absorption lines. The orbit was found circular with a period of $137.4pm0.1$ days, radial velocity semi-amplitude $K_{1} = 5.0pm0.8$ km s$^{-1}$, systemic radial velocity $gamma = +26.4pm2.0$ km s$^{-1}$, and the mass function $f(m) = (1.81^{+0.97}_{-0.76})times10^{-3}$ M$_{odot}$. The object may have evolved from a pair with initial masses of $sim$6.0 M$_{odot}$ and $sim$3.6 M$_{odot}$ with an initial orbital period of $sim$5 days. Based on the fundamental parameters of the A-supergiant (luminosity $log$ L/L$_{odot} = 4.1pm$0.1 and effective temperature T$_{rm eff} = 8500pm$500 K) and evolutionary tracks of mass-transferring binaries, we found current masses of the gainer M$_{2} = 8.8pm$0.5 M$_{odot}$ and donor M$_{1} = 0.75pm0.25$ M$_{odot}$. We also modeled the objects IR-excess and derived a dust mass of $sim 5,times10^{-5}$ M$_{odot}$ in the optically-thin dusty disk. The orbital parameters and properties of the H$alpha$ line profile suggest that the circumstellar gaseous disk is predominantly circumbinary. The relatively low mass of the gainer led us to a suggestion that 3 Pup should be excluded from the B[e] supergiant group and moved to the FS CMa group. Overall these results further support our original suggestion that FS CMa objects are binary systems, where an earlier mass-transfer caused formation of the circumstellar envelope.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا