ﻻ يوجد ملخص باللغة العربية
We investigate the accuracy of mass determinations M_BH of supermassive black holes in galaxies using dynamical models of the stellar kinematics. We compare 10 of our M_BH measurements, using integral-field OASIS kinematics, to published values. For a sample of 25 galaxies we confront our new M_BH derived using two modeling methods on the same OASIS data.
The spin modulated gravitational wave signals, which we shall call smirches, emitted by stellar mass black holes tumbling and inspiralling into massive black holes have extremely complicated shapes. Tracking these signals with the aid of pattern matc
The merger rate of stellar-mass black hole binaries (sBHBs) inferred by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) suggests the need for an efficient source of sBHB formation. Active galactic nucleus (AGN) disks are a pro
We present post-Newtonian $N$-body simulations on mergers of accreting stellar-mass black holes (BHs), where such general relativistic effects as the pericenter shift and gravitational wave (GW) emission are taken into consideration. The attention is
Different massive black hole mass - host galaxy scaling relations suggest that the growth of massive black holes is entangled with the evolution of their host galaxies. The number of measured black hole masses is still limited, and additional measure
We present a self-consistent prediction from a large-scale cosmological simulation for the population of `wandering supermassive black holes (SMBHs) of mass greater than $10^6$ M$_{odot}$ on long-lived, kpc-scale orbits within Milky Way (MW)-mass gal