ﻻ يوجد ملخص باللغة العربية
We study pentanedithiol molecular junctions formed by means of the break-junction technique with a scanning tunneling microscope at low temperatures. Using inelastic electron tunneling spectroscopy and first-principles calculations, the response of the junction to elastic deformation is examined. We show that this procedure makes a detailed characterization of the molecular junction possible. In particular, our results indicate that tunneling takes place through just a single molecule.
We analyze how functionality could be obtained within single-molecule devices by using a combination of non-equilibrium Greens functions and ab-initio calculations to study the inelastic transport properties of single-molecule junctions. First we app
We theoretically investigate quantum transport through single-molecule magnet (SMM) junctions with ferromagnetic and normal-metal leads in the sequential regime. The current obtained by means of the rate-equation gives rise to the tunneling anisotrop
The role of the tip in inelastic electron tunneling spectroscopy (IETS) performed with scanning tunneling microscopes (STM) is theoretically addressed via first-principles simulations of vibrational spectra of single carbon monoxide (CO) molecules ad
We present an extension of the tunneling theory for scanning tunneling microcopy (STM) to include different types of vibrational-electronic couplings responsible for inelastic contributions to the tunnel current in the strong-coupling limit. It allow
We present a theoretical study of the spin transport properties of mono-atomic magnetic chains with a focus on the spectroscopical features of the I-V curve associated to spin-flip processes. Our calculations are based on the s-d model for magnetism