ترغب بنشر مسار تعليمي؟ اضغط هنا

GPU-Based Volume Rendering of Noisy Multi-Spectral Astronomical Data

113   0   0.0 ( 0 )
 نشر من قبل Amr Hassan
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Traditional analysis techniques may not be sufficient for astronomers to make the best use of the data sets that current and future instruments, such as the Square Kilometre Array and its Pathfinders, will produce. By utilizing the incredible pattern-recognition ability of the human mind, scientific visualization provides an excellent opportunity for astronomers to gain valuable new insight and understanding of their data, particularly when used interactively in 3D. The goal of our work is to establish the feasibility of a real-time 3D monitoring system for data going into the Australian SKA Pathfinder archive. Based on CUDA, an increasingly popular development tool, our work utilizes the massively parallel architecture of modern graphics processing units (GPUs) to provide astronomers with an interactive 3D volume rendering for multi-spectral data sets. Unlike other approaches, we are targeting real time interactive visualization of datasets larger than GPU memory while giving special attention to data with low signal to noise ratio - two critical aspects for astronomy that are missing from most existing scientific visualization software packages. Our framework enables the astronomer to interact with the geometrical representation of the data, and to control the volume rendering process to generate a better representation of their datasets.



قيم البحث

اقرأ أيضاً

460 - A. H. Hassan , C. J. Fluke , 2010
The Australian SKA Pathfinder (ASKAP) will be producing 2.2 terabyte HI spectral-line cubes for each 8 hours of observation by 2013. Global views of spectral data cubes are vital for the detection of instrumentation errors, the identification of data artefacts and noise characteristics, and the discovery of strange phenomena, unexpected relations, or unknown patterns. We have previously presented the first framework that can render ASKAP-sized cubes at interactive frame rates. The framework provides the user with a real-time interactive volume rendering by combining shared and distributed memory architectures, distributed CPUs and graphics processing units (GPUs), using the ray-casting algorithm. In this paper we present two main extensions of this framework which are: using a multi-panel display system to provide a high resolution rendering output, and the ability to integrate automated data analysis tools into the visualization output and to interact with its output in place.
177 - A.H. Hassan , C.J. Fluke , 2012
We present a framework to interactively volume-render three-dimensional data cubes using distributed ray-casting and volume bricking over a cluster of workstations powered by one or more graphics processing units (GPUs) and a multi-core CPU. The main design target for this framework is to provide an in-core visualization solution able to provide three-dimensional interactive views of terabyte-sized data cubes. We tested the presented framework using a computing cluster comprising 64 nodes with a total of 128 GPUs. The framework proved to be scalable to render a 204 GB data cube with an average of 30 frames per second. Our performance analyses also compare between using NVIDIA Tesla 1060 and 2050 GPU architectures and the effect of increasing the visualization output resolution on the rendering performance. Although our initial focus, and the examples presented in this work, is volume rendering of spectral data cubes from radio astronomy, we contend that our approach has applicability to other disciplines where close to real-time volume rendering of terabyte-order 3D data sets is a requirement.
79 - Deborah Baines 2017
ESASky is a science-driven discovery portal to explore the multi-wavelength sky and visualise and access multiple astronomical archive holdings. The tool is a web application that requires no prior knowledge of any of the missions involved and gives users world-wide simplified access to the highest-level science data products from multiple astronomical space-based astronomy missions plus a number of ESA source catalogues. The first public release of ESASky features interfaces for the visualisation of the sky in multiple wavelengths, the visualisation of query results summaries, and the visualisation of observations and catalogue sources for single and multiple targets. This paper describes these features within ESASky, developed to address use cases from the scientific community. The decisions regarding the visualisation of large amounts of data and the technologies used were made in order to maximise the responsiveness of the application and to keep the tool as useful and intuitive as possible.
109 - A. H. Hassan , C. J. Fluke , 2011
Upcoming and future astronomy research facilities will systematically generate terabyte-sized data sets moving astronomy into the Petascale data era. While such facilities will provide astronomers with unprecedented levels of accuracy and coverage, t he increases in dataset size and dimensionality will pose serious computational challenges for many current astronomy data analysis and visualization tools. With such data sizes, even simple data analysis tasks (e.g. calculating a histogram or computing data minimum/maximum) may not be achievable without access to a supercomputing facility. To effectively handle such dataset sizes, which exceed todays single machine memory and processing limits, we present a framework that exploits the distributed power of GPUs and many-core CPUs, with a goal of providing data analysis and visualizing tasks as a service for astronomers. By mixing shared and distributed memory architectures, our framework effectively utilizes the underlying hardware infrastructure handling both batched and real-time data analysis and visualization tasks. Offering such functionality as a service in a software as a service manner will reduce the total cost of ownership, provide an easy to use tool to the wider astronomical community, and enable a more optimized utilization of the underlying hardware infrastructure.
In recent years, the Graphics Processing Unit (GPU) has emerged as a low-cost alternative for high performance computing, enabling impressive speed-ups for a range of scientific computing applications. Early adopters in astronomy are already benefiti ng in adapting their codes to take advantage of the GPUs massively parallel processing paradigm. I give an introduction to, and overview of, the use of GPUs in astronomy to date, highlighting the adoption and application trends from the first ~100 GPU-related publications in astronomy. I discuss the opportunities and challenges of utilising GPU computing clusters, such as the new Australian GPU supercomputer, gSTAR, for accelerating the rate of astronomical discovery.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا