ترغب بنشر مسار تعليمي؟ اضغط هنا

The Environmental Dependence of the Evolving S0 Fraction

161   0   0.0 ( 0 )
 نشر من قبل Dennis Just
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We reinvestigate the dramatic rise in the S0 fraction, f_S0, within clusters since z ~ 0.5. In particular, we focus on the role of the global galaxy environment on f_S0 by compiling, either from our own observations or the literature, robust line-of-sight velocity dispersions, sigmas, for a sample of galaxy groups and clusters at 0.1 < z < 0.8 that have uniformly determined, published morphological fractions. We find that the trend of f_S0 with redshift is twice as strong for sigma < 750 km/s groups/poor clusters than for higher-sigma, rich clusters. From this result, we infer that over this redshift range galaxy-galaxy interactions, which are more effective in lower-sigma environments, are more responsible for transforming spiral galaxies into S0s than galaxy-environment processes, which are more effective in higher-sigma environments. The rapid, recent growth of the S0 population in groups and poor clusters implies that large numbers of progenitors exist in low-sigma systems at modest redshifts (~ 0.5), where morphologies and internal kinematics are within the measurement range of current technology.



قيم البحث

اقرأ أيضاً

189 - T.D. Rawle 2013
We present deep GMOS long-slit spectroscopy of 15 Coma cluster S0 galaxies, and extract kinematic properties along the major axis to several times the disc scale-length. Supplementing our dataset with previously published data, we create a combined s ample of 29 Coma S0s, as well as a comparison sample of 38 Coma spirals. Using photometry from SDSS and 2MASS, we construct the Tully-Fisher relation (TFR; luminosity versus maximum rotational velocity) for S0 galaxies. At fixed rotational velocity, the Coma S0 galaxies are on average fainter than Coma spirals by 1.10$pm$0.18, 0.86$pm$0.19 and 0.83$pm$0.19 mag in the g, i and Ks bands respectively. The typical S0 offsets remain unchanged when calculated relative to large field-galaxy spiral samples. The observed offsets are consistent with a simple star formation model in which S0s are identical to spirals until abrupt quenching occurs at some intermediate redshift. The offsets form a continuous distribution tracing the time since the cessation of star formation, and exhibit a strong correlation (>6{sigma}) with residuals from the optical colour-magnitude relation. Typically, S0s which are fainter than average for their rotational velocity are also redder than average for their luminosity. The S0 TFR offset is also correlated with both the projected cluster-centric radius and the {Sigma} (projected) local density parameter. Since current local environment is correlated with time of accretion into the cluster, our results support a scenario in which transformation of spirals to S0s is triggered by cluster infall.
110 - David T. Maltby 2014
We present an analysis of V-band radial surface brightness {mu}(r) profiles for S0s in different environments using HST/ACS imaging and data from the Space Telescope A901/2 Galaxy Evolution Survey (STAGES). Using a sample of ~280 field and cluster S0 s, we find that in both environments, ~25 per cent have a pure exponential disc (Type I) and ~50 per cent exhibit an up-bending disc break (antitruncation, Type III). However, we find hardly any (< 5 per cent) down-bending disc breaks (truncations, Type II) in our S0s and many cases (~20 per cent) where no exponential component was observed. We also find no evidence for an environmental dependence on the disc scalelength or break strength (outer-to-inner scalelength ratio), implying that the galaxy environment does not affect the stellar distribution in S0 stellar discs. Comparing disc structure between these S0s and the spirals from our previous studies, we find: i) no evidence for the Type I scalelength being dependent on morphology; and ii) some evidence suggesting the Type II/III break strength is smaller (weaker) in S0s compared to spirals. Taken together, these results suggest that the stellar distribution in S0s is not drastically affected by the galaxy environment. However, some process inherent to the morphological transformation of spirals into S0s does affect the stellar disc causing a weakening of {mu}(r) breaks and may even eliminate truncations from S0s. In further tests, we perform analytical bulge-disc decompositions on our S0s and compare the results to those for spirals from our previous studies. For Type III galaxies, we find that bulge light can account for the excess light at large radii in up to ~50 per cent of S0s but in only ~15 per cent of spirals. We propose that this result is consistent with a fading stellar disc (evolving bulge-to-disc ratio) being an inherent process in the transformation of spirals into S0s.
In a sample of 54 galaxy clusters (0.04<z<0.15) containing 3551 early-type galaxies suitable for study, we identify those with tidal features both interactively and automatically. We find that ~3% have tidal features that can be detected with data th at reaches a 3-sigma sensitivity limit of 26.5 mag arcsec^-2. Regardless of the method used to classify tidal features, or the fidelity imposed on such classifications, we find a deficit of tidally disturbed galaxies with decreasing clustercentric radius that is most pronounced inside of ~0.5R_200. We cannot distinguish whether the trend arises from an increasing likelihood of recent mergers with increasing clustercentric radius or a decrease in the lifetime of tidal features with decreasing clustercentric radius. We find no evidence for a relationship between local density and the incidence of tidal features, but our local density measure has large uncertainties. We find interesting behavior in the rate of tidal features among cluster early-types as a function of clustercentric radius and expect such results to provide constraints on the effect of the cluster environment on the structure of galaxy halos, the build-up of the red sequence of galaxies, and the origin of the intracluster stellar population.
568 - David T. Maltby 2009
We present the stellar mass-size relations for elliptical, lenticular, and spiral galaxies in the field and cluster environments using HST/ACS imaging and data from the Space Telescope A901/2 Galaxy Evolution Survey (STAGES). We use a large sample of ~1200 field and cluster galaxies, and a sub-sample of cluster core galaxies, and quantify the significance of any putative environmental dependence on the stellar mass-size relation. For elliptical, lenticular, and high-mass (log M*/M_sun > 10) spiral galaxies we find no evidence to suggest any such environmental dependence, implying that internal drivers are governing their size evolution. For intermediate/low-mass spirals (log M*/M_sun < 10) we find evidence, significant at the 2-sigma level, for a possible environmental dependence on galaxy sizes: the mean effective radius a_e for lower-mass spirals is ~15-20 per cent larger in the field than in the cluster. This is due to a population of low-mass large-a_e field spirals that are largely absent from the cluster environments. These large-a_e field spirals contain extended stellar discs not present in their cluster counterparts. This suggests the fragile extended stellar discs of these spiral galaxies may not survive the environmental conditions in the cluster. Our results suggest that internal physical processes are the main drivers governing the size evolution of galaxies, with the environment possibly playing a role affecting only the discs of intermediate/low-mass spirals.
We use weak gravitational lensing to analyse the dark matter halos around satellite galaxies in galaxy groups in the CFHTLenS dataset. This dataset is derived from the CFHTLS-Wide survey, and encompasses 154 sq. deg of high-quality shape data. Using the photometric redshifts, we divide the sample of lens galaxies with stellar masses in the range 10^9 Msun to 10^10.5 Msun into those likely to lie in high-density environments (HDE) and those likely to lie in low-density environments (LDE). Through comparison with galaxy catalogues extracted from the Millennium Simulation, we show that the sample of HDE galaxies should primarily (~61%) consist of satellite galaxies in groups, while the sample of LDE galaxies should consist of mostly (~87%) non-satellite (field and central) galaxies. Comparing the lensing signals around samples of HDE and LDE galaxies matched in stellar mass, the lensing signal around HDE galaxies clearly shows a positive contribution from their host groups on their lensing signals at radii of ~500--1000 kpc, the typical separation between satellites and group centres. More importantly, the subhalos of HDE galaxies are less massive than those around LDE galaxies by a factor 0.65 +/- 0.12, significant at the 2.9 sigma level. A natural explanation is that the halos of satellite galaxies are stripped through tidal effects in the group environment. Our results are consistent with a typical tidal truncation radius of ~40 kpc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا