ﻻ يوجد ملخص باللغة العربية
Photo-assisted transport through a mesoscopic conductor occurs when an oscillatory (AC) voltage is superposed to the constant (DC) bias which is imposed on this conductor. Of particular interest is the photo assisted shot noise, which has been investigated theoretically and experimentally for several types of samples. For DC biased conductors, a detection scheme for finite frequency noise using a dissipative resonant circuit, which is inductively coupled to the mesoscopic device, was developped recently. We argue that the detection of the finite frequency photo-assisted shot noise can be achieved with the same setup, despite the fact that time translational invariance is absent here. We show that a measure of the photo-assisted shot noise can be obtained through the charge correlator associated with the resonant circuit, where the latter is averaged over the AC drive frequency. We test our predictions for a point contact placed in the fractional quantum Hall effect regime, for the case of weak backscattering. The Keldysh elements of the photo-assisted noise correlator are computed. For simple Laughlin fractions, the measured photo-assisted shot noise displays peaks at the frequency corresponding to the DC bias voltage, as well as satellite peaks separated by the AC drive frequency.
We consider the measurement of higher current moments with a dissipative resonant circuit, which is coupled inductively to a mesoscopic device in the coherent regime. Information about the higher current moments is coded in the histograms of the char
We study the finite frequency (F.F.) noise properties of edge states in the Laughlin state. We investigate the model of a resonant detector coupled to a quantum point contact in the weak-backscattering limit. In particular we discuss the impact of po
We consider the fluctuations of the electrical current (shot noise) in the presence of a voltage time-modulation. For a non-interacting metal, it is known that the derivative of the photo-assisted noise has a staircase behavior. In the presence of Co
The effect of an AC perturbation on the shot noise of a fractional quantum Hall fluid is studied both in the weak and the strong backscattering regimes. It is known that the zero-frequency current is linear in the bias voltage, while the noise deriva
By coupling a quantum detector, a superconductor-insulator-superconductor junction, to a Josephson junction textit{via} a resonant circuit we probe the high frequency properties, namely the ac complex admittance and the current fluctuations of the Jo