ترغب بنشر مسار تعليمي؟ اضغط هنا

A High Spatial Resolution Mid-Infrared Spectroscopic Study of the Nuclei and Star-Forming Regions in Luminous Infrared Galaxies

110   0   0.0 ( 0 )
 نشر من قبل Tanio Diaz-Santos
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Diaz-Santos




اسأل ChatGPT حول البحث

We present a high spatial (diffraction-limited) resolution (~0.3) mid-infrared (MIR) spectroscopic study of the nuclei and star-forming regions of 4 local luminous infrared galaxies (LIRGs) using T-ReCS on the Gemini South telescope. We investigate the spatial variations of the features seen in the N-band spectra of LIRGs on scales of ~100 pc, which allow us to separate the AGN emission from that of the star formation (SF). We compare our Gemini T-ReCS nuclear and integrated spectra of LIRGs with those obtained with Spitzer IRS. The 9.7um silicate absorption feature is weaker in the nuclei of the LIRGs than in the surrounding regions. This is probably due to the either clumpy or compact environment of the central AGN or young, nuclear starburst. We find that the [NeII] luminosity surface density is tightly and directly correlated with that of Pa-alpha for the LIRG star-forming regions (slope of 1.00+-0.02). Although the 11.3um PAH feature shows also a trend with Pa-alpha, this is not common for all the regions. We also find that the [NeII]Pa-alpha ratio does not depend on the Pa-alpha equivalent width (EW), i.e., on the age of the ionizing stellar populations, suggesting that, on the scales probed here, the [NeII] emission line is a good tracer of the SF activity in LIRGs. On the other hand, the 11.3um PAHPa-alpha ratio increases for smaller values of the Pa-alpha EW (increasing ages), indicating that the 11.3um PAH feature can also be excited by older stars than those responsible for the Pa-alpha emission. Additional high spatial resolution observations are essential to investigate, in a statistical way, the star formation in local LIRGs at the smallest scales and to probe ultimately whether they share the same physical properties as high-z LIRGs, ULIRGs and submillimiter galaxies.



قيم البحث

اقرأ أيضاً

We present diffraction-limited (FWHM ~ 0.3arcsec) Gemini/T-ReCS mid-infrared (MIR: N-band or narrow-band at 8.7micron) imaging of four Luminous Infrared Galaxies (LIRGs) drawn from a representative local sample. The MIR emission in the central few kp c is strikingly similar to that traced by Pa-alpha, and generally consists of bright nuclear emission and several compact circumnuclear and/or extranuclear HII regions. The central MIR emission is dominated by these powerful HII regions, consistent with the majority of AGN in this local sample of LIRGs contributing a minor part of the MIR emission. The luminous circumnuclear HII regions detected in LIRGs follow the extrapolation of the 8micron vs. Pa-alpha relation found for M51 HII knots. The integrated central 3-7kpc of galaxies, however, present elevated 8micron/Pa-alpha ratios with respect to individual HII regions, similar to the integrated values for star-forming galaxies. Our results show that the diffuse 8micron emission, not directly related to the ionizing stellar population, can be as luminous as that from the resolved HII regions. Therefore, calibrations of the star formation rate for distant galaxies should be based on the integrated 8micron emission of nearby galaxies, not that of the HII regions alone.
113 - G.E. Magdis 2013
We study the mid- to far-IR properties of a 24um-selected flux-limited sample (S24 > 5mJy) of 154 intermediate redshift (<z>~0.15), infrared luminous galaxies, drawn from the 5MUSES survey. By combining existing mid-IR spectroscopy and new Herschel S PIRE submm photometry from the HerMES program, we derived robust total infrared luminosity (LIR) and dust mass (Md) estimates and infered the relative contribution of the AGN to the infrared energy budget of the sources. We found that the total infrared emission of galaxies with weak 6.2um PAH emission (EW<0.2um) is dominated by AGN activity, while for galaxies with EW>0.2um more than 50% of the LIR arises from star formation. We also found that for galaxies detected in the 250-500um Herschel bands an AGN has a statistically insignificant effect on the temperature of the cold dust and the far-IR colours of the host galaxy, which are primarily shaped by star formation activity. For star-forming galaxies we reveal an anti-correlation between the LIR-to-rest-frame 8um luminosity ratio, IR8 = LIRL8, and the strength of PAH features. We found that this anti-correlation is primarily driven by variations in the PAHs emission, and not by variations in the 5-15um mid-IR continuum emission. Using the [NeIII]/[NeII] line ratio as a tracer of the hardness of the radiation field, we confirm that galaxies with harder radiation fields tend to exhibit weaker PAH features, and found that they have higher IR8 values and higher dust-mass-weighted luminosities (LIR/Md), the latter being a proxy for the dust temperature (Td). We argue that these trends originate either from variations in the environment of the star-forming regions or are caused by variations in the age of the starburst. Finally, we provide scaling relations that will allow estimating LIR, based on single-band observations with the mid-infrared instrument, on board the upcoming JWST.
63 - E. Valiante , D. Lutz , E. Sturm 2007
We present rest frame mid-infrared spectroscopy of a sample of 13 submillimeter galaxies, obtained using the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope. The sample includes exclusively bright objects from blank fields and cluste r lens assisted surveys that have accurate interferometric positions. We find that the majority of spectra are well fitted by a starburst template or by the superposition of PAH emission features and a weak mid-infrared continuum, the latter a tracer of Active Galactic Nuclei (including Compton-thick ones). We obtain mid-infrared spectroscopic redshifts for all nine sources detected with IRS. For three of them the redshifts were previously unknown. The median value of the redshift distribution is z~2.8 if we assume that the four IRS non-detections are at high redshift. The median for the IRS detections alone is z~2.7. Placing the IRS non-detections at similar redshift would require rest frame mid-IR obscuration larger than is seen in local ULIRGs. The rest frame mid-infrared spectra and mid- to far-infrared spectral energy distributions are consistent with those of local ultraluminous infrared galaxies, but scaled-up further in luminosity. The mid-infrared spectra support the scenario that submillimeter galaxies are sites of extreme star formation, rather than X-ray-obscured AGN, and represent a critical phase in the formation of massive galaxies.
We employed observational spectroscopic data of star-forming regions compiled from the literature and photoionization models to analyse the neon ionic abundances obtained using both optical and mid-infrared emission-lines. Comparing Ne++/H+ ionic abu ndances from distinct methods, we found that, in average, the abundances obtained via IR emission-lines are higher than those obtained via optical lines by a factor of 4. Photoionization models with abundance variations along the radius of the hypothetical nebula provide a possible explanation for a large part of the difference between ionic abundances via optical and infrared emission-lines. Ionization Correction Factor (ICF) for the neon is obtained from direct determinations of ionic fractions using infrared emission-lines. A constant Ne/O ratio (logNe/O approx -0.70) for a large range of metallicity, independently of the ICF used to compute the neon total abundance is derived.
We present low-resolution, rest-frame ~ 5 - 12 micron Spitzer/IRS spectra of two lensed z ~ 2 UV-bright star-forming galaxies, SDSS J120602.09+514229.5 and SDSS J090122.37+181432.3. Using the magnification boost from lensing, we are able to study the physical properties of these objects in greater detail than is possible for unlensed systems. In both targets, we detect strong PAH emission at 6.2, 7.7, and 11.3 microns, indicating the presence of vigorous star formation. For J1206, we find a steeply rising continuum and significant [S IV] emission, suggesting that a moderately hard radiation field is powering continuum emission from small dust grains. The strength of the [S IV] emission also implies a sub-solar metallicity of ~ 0.5 Z_{Sun}, confirming published rest-frame optical measurements. In J0901, the PAH lines have large rest-frame equivalent widths (> 1 micron) and the continuum rises slowly with wavelength, suggesting that any AGN contribution to L_{IR} is insignificant, in contrast to the implications of optical emission-line diagnostics. Using [O III] line flux as a proxy for AGN strength, we estimate that the AGN in J0901 provides only a small fraction of its mid-infrared continuum flux. By combining the detection of [Ar II] with an upper limit on [Ar III] emission, we infer a metallicity of > 1.3 Z_{Sun}. This work highlights the importance of combining rest-frame optical and mid-IR spectroscopy in order to understand the detailed properties of star-forming galaxies at high redshift.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا