ترغب بنشر مسار تعليمي؟ اضغط هنا

The spectral energy distribution of gamma-faint compact radio sources

122   0   0.0 ( 0 )
 نشر من قبل Eduardo Ros
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

MOJAVE is a VLBI program which monitors a statistically complete, radio-selected sample of 135 relativistically beamed, flat-spectrum active galactic nuclei for over more than a decade. In order to understand the high-energy behavior of this radio complete sample, we are performing Swift fill-in observations on the complete MOJAVE-I sample since 2007. The complete study of the spectral energy distribution from radio to X-ray bands on this radio-selected sample will provide us an opportunity to understand the nature of AGN. Here we present the preliminary results of the spectral energy distributions of six gamma-quiet or faint sources from this project: NRAO 140, PKS 0403-13, PKS B0422+004, PKS 0823+033, 3C 309.1, and 3C 380.



قيم البحث

اقرأ أيضاً

Infrared-faint radio sources (IFRS) are a class of radio-loud (RL) active galactic nuclei (AGN) at high redshifts (z > 1.7) that are characterised by their relative infrared faintness, resulting in enormous radio-to-infrared flux density ratios of up to several thousand. We aim to test the hypothesis that IFRS are young AGN, particularly GHz peaked-spectrum (GPS) and compact steep-spectrum (CSS) sources that have a low frequency turnover. We use the rich radio data set available for the Australia Telescope Large Area Survey fields, covering the frequency range between 150 MHz and 34 GHz with up to 19 wavebands from different telescopes, and build radio spectral energy distributions (SEDs) for 34 IFRS. We then study the radio properties of this class of object with respect to turnover, spectral index, and behaviour towards higher frequencies. We also present the highest-frequency radio observations of an IFRS, observed with the Plateau de Bure Interferometer at 105 GHz, and model the multi-wavelength and radio-far-infrared SED of this source. We find IFRS usually follow single power laws down to observed frequencies of around 150 MHz. Mostly, the radio SEDs are steep, but we also find ultra-steep SEDs. In particular, IFRS show statistically significantly steeper radio SEDs than the broader RL AGN population. Our analysis reveals that the fractions of GPS and CSS sources in the population of IFRS are consistent with the fractions in the broader RL AGN population. We find that at least 18% of IFRS contain young AGN, although the fraction might be significantly higher as suggested by the steep SEDs and the compact morphology of IFRS. The detailed multi-wavelength SED modelling of one IFRS shows that it is different from ordinary AGN, although it is consistent with a composite starburst-AGN model with a star formation rate of 170 solar masses per year.
Infrared-faint radio sources (IFRS) are objects that have flux densities of several mJy at 1.4GHz, but that are invisible at 3.6um when using sensitive Spitzer observations with uJy sensitivities. Their nature is unclear and difficult to investigate since they are only visible in the radio. High-resolution radio images and comprehensive spectral coverage can yield constraints on the emission mechanisms of IFRS and can give hints to similarities with known objects. We imaged a sample of 17 IFRS at 4.8GHz and 8.6GHz with the Australia Telescope Compact Array to determine the structures on arcsecond scales. We added radio data from other observing projects and from the literature to obtain broad-band radio spectra. We find that the sources in our sample are either resolved out at the higher frequencies or are compact at resolutions of a few arcsec, which implies that they are smaller than a typical galaxy. The spectra of IFRS are remarkably steep, with a median spectral index of -1.4 and a prominent lack of spectral indices larger than -0.7. We also find that, given the IR non-detections, the ratio of 1.4GHz flux density to 3.6um flux density is very high, and this puts them into the same regime as high-redshift radio galaxies. The evidence that IFRS are predominantly high-redshift sources driven by active galactic nuclei (AGN) is strong, even though not all IFRS may be caused by the same phenomenon. Compared to the rare and painstakingly collected high-redshift radio galaxies, IFRS appear to be much more abundant, but less luminous, AGN-driven galaxies at similar cosmological distances.
243 - P. Tozzi 2009
We present the multiwavelength properties of 266 cataloged radio sources identified with 20 and 6 cm VLA deep observations of the CDFS at a flux density limit of 42 mu Jy at the field centre at 1.4 GHz. These new observations probe the faint end of b oth the star formation and radio galaxy/AGN population. X-ray data, including upper limits, turn out to be a key factor in establishing the nature of faint radio sources. We find that, while the well-known flattening of the radio number counts below 1 mJy is mostly due to star forming galaxies, these sources and AGN make up an approximately equal fraction of the sub--millijansky sky, contrary to some previous results. We have also uncovered a population of distant AGN systematically missing from many previous studies of sub-millijansky radio source identifications. The AGN include radio galaxies, mostly of the low-power, Fanaroff-Riley I type, and a significant radio-quiet component, which amounts to approximately one fifth of the total sample. We also find that radio detected, X-ray AGN are not more heavily obscured than the X-ray detected AGN. This argues against the use of radio surveys as an efficient way to search for the missing population of strongly absorbed AGN.
It has been speculated that low luminosity radio-loud AGN have the potential to serve as an important source of AGN feedback, and may be responsible for suppressing star-formation activity in massive elliptical galaxies at late times. As such the cos mic evolution of these sources is vitally important to understanding the significance of such AGN feedback processes and their influence on the global star-formation history of the universe. In this paper we present a new investigation of the evolution of faint radio sources out to $z{sim}2.5$. We combine a 1 square degree VLA radio survey, complete to a depth of 100 $mu$Jy, with accurate 10 band photometric redshifts from the VIDEO and CFHTLS surveys. The results indicate that the radio population experiences mild positive evolution out to $z{sim}1.2$ increasing their space density by a factor of $sim$3, consistent with results of several previous studies. Beyond $z$=1.2 there is evidence of a slowing down of this evolution. Star-forming galaxies drive the more rapid evolution at low redshifts, $z{<}$1.2, while more slowly evolving AGN populations dominate at higher redshifts resulting in a decline in the evolution of the radio luminosity function at $z{>}$1.2. The evolution is best fit by pure luminosity evolution with star-forming galaxies evolving as $(1+z)^{2.47pm0.12}$ and AGN as $(1+z)^{1.18pm0.21}$.
138 - C. Konar 2009
Multifrequency observations with the GMRT and the VLA are used to determine the spectral breaks in consecutive strips along the lobes of a sample of selected giant radio sources (GRSs) in order to estimate their spectral ages. The maximum spectral ag es estimated for the detected radio emission in the lobes of our sample of ten sources has a median value of $sim$20 Myr. The spectral ages of these GRSs are significantly older than smaller sources. In all but one source (J1313+6937) the spectral age gradually increases with distance from the hotspot regions, confirming that acceleration of the particles mainly occurs in the hotspots. Most of the GRSs do not exhibit zero spectral ages in the hotspots. This is likely to be largely due to contamination by more extended emission due to relatively modest resolutions. The injection spectral indices range from $sim$0.55 to 0.88 with a median value of $sim$0.6. We show that the injection spectral index appears to be correlated with luminosity and/or redshift as well as with linear size.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا