ترغب بنشر مسار تعليمي؟ اضغط هنا

Clues from nearby galaxies to a better theory of cosmic evolution

217   0   0.0 ( 0 )
 نشر من قبل Nusser
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The great advances in the network of cosmological tests show that the relativistic Big Bang theory is a good description of our expanding universe. But the properties of nearby galaxies that can be observed in greatest detail suggest a still better theory would more rapidly gather matter into galaxies and groups of galaxies. This happens in theoretical ideas now under discussion.



قيم البحث

اقرأ أيضاً

143 - F. J. Lockman , J. Ott 2009
Studies of nearby galaxies including the Milky Way have provided fundamental information on the evolution of structure in the Universe, the existence and nature of dark matter, the origin and evolution of galaxies, and the global features of star for mation. Yet despite decades of work, many of the most basic aspects of galaxies and their environments remain a mystery. In this paper we describe some outstanding problems in this area and the ways in which large radio facilities will contribute to further progress.
We study the properties of Bose-Einstein Condensate (BEC) systems consisting of two scalars, focusing on both the case where the BEC is stellar scale as well as the case when it is galactic scale. After studying the stability of such systems and maki ng contact with existing single scalar limits, we undertake a numerical study of the two interacting scalars using Einstein-Klein-Gordon (EKG) equations, including both non-gravitational self-interactions and interactions between the species. We show that the presence of extra scalars and possible interactions between them can leave unique imprints on the BEC system mass profile, especially when the system transitions from being dominated by one scalar to being dominated by the other. At stellar scales (nonlinear regime,) we observe that a repulsive interaction between the two scalars of the type $+phi_1^2 phi_2^2$ can stabilize the BEC system and support it up to high compactness, a phenomenon only known to exist in the $+phi^4$ system. We provide simple analytic understanding of this behavior and point out that it can lead to interesting gravitational wave signals at LIGO-Virgo. At galactic scales, on the other hand, we show that two-scalar BECs can address the scaling problem that arises when one uses ultralight dark matter mass profiles to fit observed galactic core mass profiles. In the end, we construct a particle model of two ultralight scalars with the repulsive $phi_1^2 phi_2^2$ interaction using collective symmetry breaking. We develop a fast numerical code that utilizes the relaxation method to solve the EKG system, which can be easily generalized to multiple scalars.
Bose-Einstein Condensate Dark Matter (BECDM; also known as Fuzzy Dark Matter) is motivated by fundamental physics and has recently received significant attention as a serious alternative to the established Cold Dark Matter (CDM) model. We perform cos mological simulations of BECDM gravitationally coupled to baryons and investigate structure formation at high redshifts ($z gtrsim 5$) for a boson mass $m=2.5cdot 10^{-22}~{rm eV}$, exploring the dynamical effects of its wavelike nature on the cosmic web and the formation of first galaxies. Our BECDM simulations are directly compared to CDM as well as to simulations where the dynamical quantum potential is ignored and only the initial suppression of the power spectrum is considered -- a Warm Dark Matter-like (WDM) model often used as a proxy for BECDM. Our simulations confirm that WDM is a good approximation to BECDM on large cosmological scales even in the presence of the baryonic feedback. Similarities also exist on small scales, with primordial star formation happening both in isolated haloes and continuously along cosmic filaments; the latter effect is not present in CDM. Global star formation and metal enrichment in these first galaxies are delayed in BECDM/WDM compared to the CDM case: in BECDM/WDM first stars form at $zsim 13$/$13.5$ while in CDM star formation starts at $zsim 35$. The signature of BECDM interference, not present in WDM, is seen in the evolved dark matter power spectrum: although the small scale structure is initially suppressed, power on kpc scales is added at lower redshifts. Our simulations lay the groundwork for realistic simulations of galaxy formation in BECDM.
Persistent evidence for a cosmic hemispherical asymmetry in the temperature field of cosmic microwave background (CMB) as observed by both WMAP as well as PLANCK increases the possibility of its cosmological origin. Presence of this signal may lead t o different values for the standard model cosmological parameters in different directions, and that can have significant implications for other studies where they are used. We investigate the effect of this cosmic hemispherical asymmetry on cosmological parameters using non-isotropic Gaussian random simulations injected with both scale dependent and scale independent modulation strengths. Our analysis shows that $A_s$ and $n_s$ are the most susceptible parameters to acquire position dependence across the sky for the kind of isotropy breaking phenomena under study. As expected, we find maximum variation arises for the case of scale independent modulation of CMB anisotropies. We find that scale dependent modulation profile as seen in PLANCK data could lead to only $1.25sigma$ deviation in $A_s$ in comparison to its estimate from isotropic CMB sky.
Recently, several statistically significant tensions between different cosmological datasets have raised doubts about the standard Lambda cold dark matter ($Lambda$CDM) model. A recent letter~citet{Huang:2020mub} suggests to use Parameterization base d on cosmic Age (PAge) to approximate a broad class of beyond-$Lambda$CDM models, with a typical accuracy $sim 1%$ in angular diameter distances at $zlesssim 10$. In this work, we extend PAge to a More Accurate Parameterization based on cosmic Age (MAPAge) by adding a new degree of freedom $eta_2$. The parameter $eta_2$ describes the difference between physically motivated models and their phenomenological PAge approximations. The accuracy of MAPAge, typically of order $10^{-3}$ in angular diameter distances at $zlesssim 10$, is significantly better than PAge. We compare PAge and MAPAge with current observational data and forecast data. The conjecture in~citet{Huang:2020mub}, that PAge approximation is sufficiently good for current observations, is quantitatively confirmed in this work. We also show that the extension from PAge to MAPAge is important for future observations, which typically requires sub-percent accuracy in theoretical predictions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا