ﻻ يوجد ملخص باللغة العربية
Determining the effect of structural perturbations on the eigenvalue spectra of networks is an important problem because the spectra characterize not only their topological structures, but also their dynamical behavior, such as synchronization and cascading processes on networks. Here we develop a theory for estimating the change of the largest eigenvalue of the adjacency matrix or the extreme eigenvalues of the graph Laplacian when small but arbitrary set of links are added or removed from the network. We demonstrate the effectiveness of our approximation schemes using both real and artificial networks, showing in particular that we can accurately obtain the spectral ranking of small subgraphs. We also propose a local iterative scheme which computes the relative ranking of a subgraph using only the connectivity information of its neighbors within a few links. Our results may not only contribute to our theoretical understanding of dynamical processes on networks, but also lead to practical applications in ranking subgraphs of real complex networks.
We study how large functional networks can grow stably under possible cascading overload failures and evaluated the maximum stable network size above which even a small-scale failure would cause a fatal breakdown of the network. Employing a model of
We use a generic model for type-I excitability (known as the SNIPER or SNIC model) to describe the local dynamics of nodes within a network in the presence of non-zero coupling delays. Utilising the method of the Master Stability Function, we investi
Eigenstates of fully many-body localized (FMBL) systems can be organized into spin algebras based on quasilocal operators called l-bits. These spin algebras define quasilocal l-bit measurement ($tau^z_i$) and l-bit flip ($tau^x_i$) operators. For a d
We study rare phase slips due to noise in synchronized Kuramoto oscillator networks. In the small-noise limit, we demonstrate that slips occur via large fluctuations to saddle phase-locked states. For tree topologies, slips appear between subgraphs t
We consider synchronization of weighted networks, possibly with asymmetrical connections. We show that the synchronizability of the networks cannot be directly inferred from their statistical properties. Small local changes in the network structure c