ترغب بنشر مسار تعليمي؟ اضغط هنا

Powerful jets from accreting black holes: evidence from the optical and infrared

154   0   0.0 ( 0 )
 نشر من قبل David Russell
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. M. Russell




اسأل ChatGPT حول البحث

A common consequence of accretion onto black holes is the formation of powerful, relativistic jets that escape the system. In the case of supermassive black holes at the centres of galaxies this has been known for decades, but for stellar-mass black holes residing within galaxies like our own, it has taken recent advances to arrive at this conclusion. Here, a review is given of the evidence that supports the existence of jets from accreting stellar-mass black holes, from observations made at optical and infrared wavelengths. In particular it is found that on occasion, jets can dominate the emission of these systems at these wavelengths. In addition, the interactions between the jets and the surrounding matter produce optical and infrared emission on large scales via thermal and non-thermal processes. The evidence, implications and applications in the context of jet physics are discussed. It is shown that many properties of the jets can be constrained from these studies, including the total kinetic power they contain. The main conclusion is that like the supermassive black holes, the jet kinetic power of accreting stellar-mass black holes is sometimes comparable to their bolometric radiative luminosity. Future studies can test ubiquities in jet properties between objects, and attempt to unify the properties of jets from all observable accreting black holes, i.e. of all masses.



قيم البحث

اقرأ أيضاً

99 - I.F. Mirabel 2016
Here are reviewed the insights from observations at optical and infrared wavelengths for low mass limits above which stars do not seem to end as luminous supernovae. These insights are: (1) the absence in archived images of nearby galaxies of stellar progenitors of core-collapse supernovae above 16-18 solar masses, (2) the identification of luminous-massive stars that quietly disappear without optically bright supernovae, (3) the absence in the nebular spectra of supernovae of type II-P of the nucleosynthetic products expected from progenitors above 20 solar masses, (4) the absence in color magnitude diagrams of stars in the environment of historic core-collapse supernovae of stars with >20 solar masses. From the results in these different areas of observational astrophysics, and the recently confirmed dependence of black hole formation on metallicity and redshift of progenitors, it is concluded that a large fraction of massive stellar binaries in the universe end as binary black holes.
We present an analysis of ionized X-ray disk winds observed in the Fe K band of four stellar-mass black holes observed with Chandra, including 4U 1630-47, GRO J1655-40, H 1743-322, and GRS 1915+105. High-resolution photoionization grids were generate d in order to model the data. Third-order gratings spectra were used to resolve complex absorption profiles into atomic effects and multiple velocity components. The Fe XXV line is found to be shaped by contributions from the intercombination line (in absorption), and the Fe XXVI line is detected as a spin-orbit doublet. The data require 2-3 absorption zones, depending on the source. The fastest components have velocities approaching or exceeding 0.01c, increasing mass outflow rates and wind kinetic power by orders of magnitude over prior single-zone models. The first-order spectra require re-emission from the wind, broadened by a degree that is loosely consistent with Keplerian orbital velocities at the photoionization radius. This suggests that disk winds are rotating with the orbital velocity of the underlying disk, and provides a new means of estimating launching radii -- crucial to understanding wind driving mechanisms. Some aspects of the wind velocities and radii correspond well to the broad-line region (BLR) in active galactic nuclei, suggesting a physical connection. We discuss these results in terms of prevalent models for disk wind production and disk accretion itself, and implications for massive black holes in active galactic nuclei.
The current understanding of the formation of powerful bi-directional jets in systems such as radio galaxies and quasars is that the process involves a supermassive black hole that is being fed with magnetized gas through an orbiting accretion disc. In this paper we discuss the dynamics of the jet powered by rotating black holes, in the presence of a magnetic field, including the scaling of the jet length and their typical time scales. We consider a unified picture covering all phenomena involving jets and rotating black holes ranging from gamma ray bursts to extragalactic jets and discuss the relevant scaling laws. We have also discussed the acceleration of the particles in jets and consequent synchrotron and inverse Compton radiations. Accelerated protons from jets as possible sources of high energy cosmic rays are also discussed.
I outline the theory of accretion onto black holes, and its application to observed phenomena such as X-ray binaries, active galactic nuclei, tidal disruption events, and gamma-ray bursts. The dynamics as well as radiative signatures of black hole ac cretion depend on interactions between the relatively simple black-hole spacetime and complex radiation, plasma and magnetohydrodynamical processes in the surrounding gas. I will show how transient accretion processes could provide clues to these interactions. Larger global magnetohydrodynamic simulations as well as simulations incorporating plasma microphysics and full radiation hydrodynamics will be needed to unravel some of the current mysteries of black hole accretion.
Apart from the few tens of stellar-mass black holes discovered in binary systems, an order of $10^8$ isolated black holes (IBHs) are believed to be lurking in our Galaxy. Although some IBHs are able to accrete matter from the interstellar medium, the accretion flow is usually weak and thus radiatively inefficient, which results in significant material outflow. We study electron acceleration generated by the shock formed between this outflow and the surrounding material, and the subsequent radio synchrotron emission from accelerated electrons. By numerically calculating orbits of IBHs to obtain their spatial and velocity distributions, we estimate the number of IBHs detectable by surveys using SKA1-mid (SKA2) as $sim 30$ ($sim 700$) for the most optimistic case. The SKAs parallax measurements may accurately give their distances, possibly shedding light on the properties of the black holes in our Galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا