ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of vortex nucleation in a rotating two-dimensional lattice of Bose-Einstein condensates

225   0   0.0 ( 0 )
 نشر من قبل Ross Williams
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the observation of vortex nucleation in a rotating optical lattice. A 87Rb Bose-Einstein condensate was loaded into a static two-dimensional lattice and the rotation frequency of the lattice was then increased from zero. We studied how vortex nucleation depended on optical lattice depth and rotation frequency. For deep lattices above the chemical potential of the condensate we observed a linear dependence of the number of vortices created with the rotation frequency,even below the thermodynamic critical frequency required for vortex nucleation. At these lattice depths the system formed an array of Josephson-coupled condensates. The effective magnetic field produced by rotation introduced characteristic relative phases between neighbouring condensates, such that vortices were observed upon ramping down the lattice depth and recombining the condensates.



قيم البحث

اقرأ أيضاً

Equilibrium vortex formation in rotating binary Bose gases with a rotating frequency higher than the harmonic trapping frequency is investigated theoretically. We consider the system being evaporatively cooled to form condensates and a combined numer ical scheme is applied to ensure the binary system being in an authentic equilibrium state. To keep the system stable against the large centrifugal force of ultrafast rotation, a quartic trapping potential is added to the existing harmonic part. Using the Thomas-Fermi approximation, a critical rotating frequency Omega_c is derived, which characterizes the structure with or without a central density hole. Vortex structures are studied in detail with rotation frequency both above and below ?Omega_c and with respect to the miscible, symmetrically separated, and asymmetrically separated phases in their nonrotating ground-state counterparts.
We investigate a small vortex-lattice system of four co-rotating vortices in an atomic Bose--Einstein condensate and find that the vortex dynamics display chaotic behaviour after a system quench introduced by reversing the direction of circulation of a single vortex through a phase-imprinting process. By tracking the vortex trajectories and Lyapunov exponent, we show the onset of chaotic dynamics is not immediate, but occurs at later times and is accelerated by the close-approach and separation of all vortices in a scattering event. The techniques we develop could potentially be applied to create locally induced chaotic dynamics in larger lattice systems as a stepping stone to study the role of chaotic events in turbulent vortex dynamics.
Engineering of synthetic magnetic flux in Bose-Einstein condensates [Lin et al., Nature {bf 462}, 628 (2009)] has prospects for attaining the high vortex densities necessary to emulate the fractional quantum Hall effect. We analytically establish the hydrodynamical behaviour of a condensate in a uniform synthetic magnetic field, including its density and velocity profile. Importantly, we find that the onset of vortex nucleation observed experimentally corresponds to a dynamical instability in the hydrodynamical solutions and reveal other routes to instability and anticipated vortex nucleation.
We observe interlaced square vortex lattices in rotating two-component dilute-gas Bose-Einstein condensates (BEC). After preparing a hexagonal vortex lattice in a single-component BEC in an internal state $|1>$ of $^{87}$Rb atoms, we coherently trans fer a fraction of the superfluid to a different internal state $|2>$. The subsequent evolution of this pseudo-spin-1/2 superfluid towards a state of offset square lattices involves an intriguing interplay of phase-separation and -mixing dynamics, both macroscopically and on the length scale of the vortex cores, and a stage of vortex turbulence. Stability of the square lattice structure is confirmed via the application of shear perturbations, after which the structure relaxes back to the square configuration. We use an interference technique to show the spatial offset between the two vortex lattices. Vortex cores in either component are filled by fluid of the other component, such that the spin-1/2 order parameter forms a Skyrmion lattice.
We experimentally investigate the dynamics of spin solitary waves (magnetic solitons) in a harmonically trapped, binary superfluid mixture. We measure the in-situ density of each pseudospin component and their relative local phase via an interferomet ric technique we developed, and as such, fully characterise the magnetic solitons while they undergo oscillatory motion in the trap. Magnetic solitons exhibit non-dispersive, dissipationless long-time dynamics. By imprinting multiple magnetic solitons in our ultracold gas sample, we engineer binary collisions between solitons of either same or opposite magnetisation and map out their trajectories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا