ﻻ يوجد ملخص باللغة العربية
We present preliminary asteroseismic results from Kepler on three G-type stars. The observations, made at one-minute cadence during the first 33.5d of science operations, reveal high signal-to-noise solar-like oscillation spectra in all three stars: About 20 modes of oscillation may be clearly distinguished in each star. We discuss the appearance of the oscillation spectra, use the frequencies and frequency separations to provide first results on the radii, masses and ages of the stars, and comment in the light of these results on prospects for inference on other solar-type stars that Kepler will observe.
Asteroseismology with the Kepler space telescope is providing not only an improved characterization of exoplanets and their host stars, but also a new window on stellar structure and evolution for the large sample of solar-type stars in the field. We
The Kepler space telescope yielded unprecedented data for the study of solar-like oscillations in other stars. The large samples of multi-year observations posed an enormous data analysis challenge that has only recently been surmounted. Asteroseismi
Recently the number of main-sequence and subgiant stars exhibiting solar-like oscillations that are resolved into individual mode frequencies has increased dramatically. While only a few such data sets were available for detailed modeling just a deca
Stellar magnetic activity decays over the main-sequence life of cool stars due to the stellar spin-down driven by magnetic braking. The evolution of chromospheric emission is well-studied for younger stars, but difficulties in determining the ages of
The influence of rotational mixing on the evolution and asteroseismic properties of solar-type stars is studied. Rotational mixing changes the global properties of a solar-type star with a significant increase of the effective temperature resulting i