ﻻ يوجد ملخص باللغة العربية
For a two-user Gaussian multiple access channel (GMAC), frequency division multiple access (FDMA), a well known orthogonal-multiple-access (O-MA) scheme has been preferred to non-orthogonal-multiple-access (NO-MA) schemes since FDMA can achieve the sum-capacity of the channel with only single-user decoding complexity [emph{Chapter 14, Elements of Information Theory by Cover and Thomas}]. However, with finite alphabets, in this paper, we show that NO-MA is better than O-MA for a two-user GMAC. We plot the constellation constrained (CC) capacity regions of a two-user GMAC with FDMA and time division multiple access (TDMA) and compare them with the CC capacity regions with trellis coded multiple access (TCMA), a recently introduced NO-MA scheme. Unlike the Gaussian alphabets case, it is shown that the CC capacity region with FDMA is strictly contained inside the CC capacity region with TCMA. In particular, for a given bandwidth, the gap between the CC capacity regions with TCMA and FDMA is shown to increase with the increase in the average power constraint. Also, for a given power constraint, the gap between the CC capacity regions with TCMA and FDMA is shown to decrease with the increase in the bandwidth. Hence, for finite alphabets, a NO-MA scheme such as TCMA is better than the well known O-MAC schemes, FDMA and TDMA which makes NO-MA schemes worth pursuing in practice for a two-user GMAC.
In this paper, we present a finite-block-length comparison between the orthogonal multiple access (OMA) scheme and the non-orthogonal multiple access (NOMA) for the uplink channel. First, we consider the Gaussian channel, and derive the closed form e
Non-orthogonal multiple access (NOMA) is one of the key techniques to address the high spectral efficiency and massive connectivity requirements for the fifth generation (5G) wireless system. To efficiently realize NOMA, we propose a joint design fra
We introduce clustered millimeter wave networks with invoking non-orthogonal multiple access~(NOMA) techniques, where the NOMA users are modeled as Poisson cluster processes and each cluster contains a base station (BS) located at the center. To prov
This paper aims to provide a comprehensive solution for the design, analysis, and optimization of a multiple-antenna non-orthogonal multiple access (NOMA) system for multiuser downlink communication with both time duplex division (TDD) and frequency
The proliferation of mobile Internet and connected devices, offering a variety of services at different levels of performance, represents a major challenge for the fifth generation wireless networks and beyond. This requires a paradigm shift towards