ﻻ يوجد ملخص باللغة العربية
We consider equation systems of the form X_1 = f_1(X_1, ..., X_n), ..., X_n = f_n(X_1, ..., X_n) where f_1, ..., f_n are polynomials with positive real coefficients. In vector form we denote such an equation system by X = f(X) and call f a system of positive polynomials, short SPP. Equation systems of this kind appear naturally in the analysis of stochastic models like stochastic context-free grammars (with numerous applications to natural language processing and computational biology), probabilistic programs with procedures, web-surfing models with back buttons, and branching processes. The least nonnegative solution mu f of an SPP equation X = f(X) is of central interest for these models. Etessami and Yannakakis have suggested a particular version of Newtons method to approximate mu f. We extend a result of Etessami and Yannakakis and show that Newtons method starting at 0 always converges to mu f. We obtain lower bounds on the convergence speed of the method. For so-called strongly connected SPPs we prove the existence of a threshold k_f such that for every i >= 0 the (k_f+i)-th iteration of Newtons method has at least i valid bits of mu f. The proof yields an explicit bound for k_f depending only on syntactic parameters of f. We further show that for arbitrary SPP equations Newtons method still converges linearly: there are k_f>=0 and alpha_f>0 such that for every i>=0 the (k_f+alpha_f i)-th iteration of Newtons method has at least i valid bits of mu f. The proof yields an explicit bound for alpha_f; the bound is exponential in the number of equations, but we also show that it is essentially optimal. Constructing a bound for k_f is still an open problem. Finally, we also provide a geometric interpretation of Newtons method for SPPs.
In this work, we propose a novel sampling method for Design of Experiments. This method allows to sample such input values of the parameters of a computational model for which the constructed surrogate model will have the least possible approximation
We investigate four model-theoretic tameness properties in the context of least fixed-point logic over a family of finite structures. We find that each of these properties depends only on the elementary (i.e., first-order) limit theory, and we comple
We derive closed formulas for the condition number of a linear function of the total least squares solution. Given an over determined linear system Ax=b, we show that this condition number can be computed using the singular values and the right singu
We consider the family $mathrm{MP}_d$ of affine conjugacy classes of polynomial maps of one complex variable with degree $d geq 2$, and study the map $Phi_d:mathrm{MP}_dto widetilde{Lambda}_d subset mathbb{C}^d / mathfrak{S}_d$ which maps each $f in
Given a polynomial system f associated with a simple multiple zero x of multiplicity {mu}, we give a computable lower bound on the minimal distance between the simple multiple zero x and other zeros of f. If x is only given with limited accuracy, we