ﻻ يوجد ملخص باللغة العربية
Many probabilistic models introduce strong dependencies between variables using a latent multivariate Gaussian distribution or a Gaussian process. We present a new Markov chain Monte Carlo algorithm for performing inference in models with multivariate Gaussian priors. Its key properties are: 1) it has simple, generic code applicable to many models, 2) it has no free parameters, 3) it works well for a variety of Gaussian process based models. These properties make our method ideal for use while model building, removing the need to spend time deriving and tuning updates for more complex algorithms.
Markov chain Monte Carlo (MCMC) methods asymptotically sample from complex probability distributions. The pseudo-marginal MCMC framework only requires an unbiased estimator of the unnormalized probability distribution function to construct a Markov c
In this paper we introduce a new sampling algorithm which has the potential to be adopted as a universal replacement to the Metropolis--Hastings algorithm. It is related to the slice sampler, and motivated by an algorithm which is applicable to discr
Monte Carlo (MC) methods are widely used for Bayesian inference and optimization in statistics, signal processing and machine learning. A well-known class of MC methods are Markov Chain Monte Carlo (MCMC) algorithms. In order to foster better explora
Inference in continuous label Markov random fields is a challenging task. We use particle belief propagation (PBP) for solving the inference problem in continuous label space. Sampling particles from the belief distribution is typically done by using
Nested sampling (NS) computes parameter posterior distributions and makes Bayesian model comparison computationally feasible. Its strengths are the unsupervised navigation of complex, potentially multi-modal posteriors until a well-defined terminatio