ﻻ يوجد ملخص باللغة العربية
We present first-principles investigation of the electronic structure and magnetic properties of uranium monochalcogenides: US, USe, UTe. The calculations were performed by using recently developed LDA+U+SO method in which both Coulomb and spin-orbit interactions have been taken into account in rotationally invariant form. We discuss the problem of choice of the Coulomb interaction value. The calculated [111] easy axes agree with those experimentally observed. The electronic configuration 5$f^3$ was found for all uranium compounds under investigation.
We present results of an ab-initio study of the electronic structure of 140 rare earth compounds. Specifically we predict an electronic phase diagram of the entire range of rare earth monopnictides and monochalcogenides, composed of metallic, semicon
The equation of state, structural behavior and phase stability of {alpha}-uranium have been investigated up to 1.3 TPa using density functional theory, adopting a simple description of electronic structure that neglects the spin-orbit coupling and st
Different stoichiometric configurations of graphane and graphene fluoride are investigated within density functional theory. Their structural and electronic properties are compared, and we indicate the similarities and differences among the various c
The transition metal dichalcogenide (TMD) $1T$-TaS$_{2}$ exhibits a rich set of charge density wave (CDW) orders. Recent investigations suggested that using light or electric field can manipulate the commensurate (C) CDW ground state. Such manipulati
The self-interaction-corrected local-spin-density approximation is used to describe the electronic structure of dioxides, REO$_2$, and sesquioxides, RE$_2$O$_3$, for the rare earths, RE=Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy and Ho. The valencies of the