ترغب بنشر مسار تعليمي؟ اضغط هنا

On Channel-Discontinuity-Constraint Routing in Wireless Networks

149   0   0.0 ( 0 )
 نشر من قبل Swaminathan Sankararaman
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Multi-channel wireless networks are increasingly being employed as infrastructure networks, e.g. in metro areas. Nodes in these networks frequently employ directional antennas to improve spatial throughput. In such networks, given a source and destination, it is of interest to compute an optimal path and channel assignment on every link in the path such that the path bandwidth is the same as that of the link bandwidth and such a path satisfies the constraint that no two consecutive links on the path are assigned the same channel, referred to as Channel Discontinuity Constraint (CDC). CDC-paths are also quite useful for TDMA system, where preferably every consecutive links along a path are assigned different time slots. This paper contains several contributions. We first present an $O(N^{2})$ distributed algorithm for discovering the shortest CDC-path between given source and destination. This improves the running time of the $O(N^{3})$ centralized algorithm of Ahuja et al. for finding the minimum-weight CDC-path. Our second result is a generalized $t$-spanner for CDC-path; For any $theta>0$ we show how to construct a sub-network containing only $O(frac{N}{theta})$ edges, such that that length of shortest CDC-paths between arbitrary sources and destinations increases by only a factor of at most $(1-2sin{tfrac{theta}{2}})^{-2}$. We propose a novel algorithm to compute the spanner in a distributed manner using only $O(nlog{n})$ messages. An important conclusion of this scheme is in the case of directional antennas are used. In this case, it is enough to consider only the two closest nodes in each cone.



قيم البحث

اقرأ أيضاً

223 - Weifeng Sun , Rong Cong , Feng Xia 2010
Even though channel assignment has been studied for years, the performance of most IEEE 802.11-based multi-hop wireless networks such as wireless sensor network (WSN), wireless mesh network (WMN), mobile ad hoc network (MANET) is limited by channel i nterference. Properly assigning orthogonal channels to wireless links can improve the throughput of multi-hop networks. To solve the dynamic channel assignment problem, a routing-based channel assignment algorithm called R-CA is proposed. R-CA can allocate channels for wireless nodes when needed and free channels after data transmission. Thus more channel resource can be explored by wireless nodes. Simulation results show that R-CA can effectively enhance the network throughput and packet delivery rate.
146 - N. Javaid , A. BiBi , A. Javaid 2013
In this paper, we propose a new Quality Link Metric (QLM), ``Inverse Expected Transmission Count (InvETX) in Optimized Link State Routing (OLSR) protocol. Then we compare performance of three existing QLMs which are based on loss probability measurem ents; Expected Transmission Count (ETX), Minimum Delay (MD), Minimum Loss (ML) in Static Wireless Multi-hop Networks (SWMhNs). A novel contribution of this paper is enhancement in conventional OLSR to achieve high efficiency in terms of optimized routing load and routing latency. For this purpose, first we present a mathematical framework, and then to validate this frame work, we select three performance parameters to simulate default and enhanc
In an era where communication has a most important role in modern societies, designing efficient algorithms for data transmission is of the outmost importance. TDMA is a technology used in many communication systems such as satellite, cell phone as w ell as other wireless or mobile networks. Most 2G cellular systems as well as some 3G are TDMA based. In order to transmit data in such systems we need to cluster them in packages. To achieve a faster transmission we are allowed to preempt the transmission of any packet in order to resume at a later time. Preemption can be used to reduce idleness of some stations. Such preemptions though come with a reconfiguration cost in order to setup for the next transmission. In this paper we propose two algorithms which yield improved transmission scheduling. These two algorithms we call MGA and IMGA (Improved MGA). We have proven an approximation ratio for MGA and ran experiments to establish that it works even better in practice. In order to conclude that MGA will be a very helpful tool in constructing an improved schedule for packet routing using preemtion with a setup cost, we compare its results to two other efficient algorithms designed by researchers in the past: A-PBS(d+1) and GWA. To establish the efficiency of IMGA we ran experiments in comparison to MGA as well as A-PBS(d+1) and GWA. IMGA has proven to produce the most efficient schedule on all counts.
141 - Huy Nguyen , Gabriel Scalosub , 2013
Passive monitoring utilizing distributed wireless sniffers is an effective technique to monitor activities in wireless infrastructure networks for fault diagnosis, resource management and critical path analysis. In this paper, we introduce a quality of monitoring (QoM) metric defined by the expected number of active users monitored, and investigate the problem of maximizing QoM by judiciously assigning sniffers to channels based on the knowledge of user activities in a multi-channel wireless network. Two types of capture models are considered. The user-centric model assumes frame-level capturing capability of sniffers such that the activities of different users can be distinguished while the sniffer-centric model only utilizes the binary channel information (active or not) at a sniffer. For the user-centric model, we show that the implied optimization problem is NP-hard, but a constant approximation ratio can be attained via polynomial complexity algorithms. For the sniffer-centric model, we devise stochastic inference schemes to transform the problem into the user-centric domain, where we are able to apply our polynomial approximation algorithms. The effectiveness of our proposed schemes and algorithms is further evaluated using both synthetic data as well as real-world traces from an operational WLAN.
178 - Moufida Maimour 2008
In wireless sensor networks, bandwidth is one of precious resources to multimedia applications. To get more bandwidth, multipath routing is one appropriate solution provided that inter-path interferences are minimized. In this paper, we address the p roblem of interfering paths in the context of wireless multimedia sensor networks and consider both intra-session as well as inter-session interferences. Our main objective is to provide necessary bandwidth to multimedia applications through non-interfering paths while increasing the network lifetime. To do so, we adopt an incremental approach where for a given session, only one path is built at once. Additional paths are built when required, typically in case of congestion or bandwidth shortage. Interference awareness and energy saving are achieved by switching a subset of sensor nodes in a {em passive state} in which they do not take part in the routing process. Despite the routing overhead introduced by the incremental approach we adopt, our simulations show that this can be compensated by the overall achieved throughput and the amount of consumed energy per correctly received packet especially for relatively long sessions such as multimedia ones. This is mainly due to the fact that a small number of non-interfering paths allows for better performances than a large number of interfering ones.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا