ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarization in young open cluster NGC 6823

118   0   0.0 ( 0 )
 نشر من قبل Biman J. Medhi
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present multiwavelength linear polarimetric observations of 104 stars towards the region of young open cluster NGC 6823. The polarization towards NGC 6823 is dominated by foreground dust grains and we found the evidence for the presence of several layers of dust towards the line of sight. The first layer of dust is located approximately within 200 pc towards the cluster, which is much closer to the Sun than the cluster (~ 2.1 kpc). The radial distribution of the position angles for the member stars are found to show a systematic change while the polarization found to reduce towards the outer parts of the cluster and the average position angle of coronal region of the cluster is very close to the inclination of the Galactic parallel (~ 32 degree). The size distribution of the grains within NGC 6823 is similar to those in general interstellar medium. The patchy distribution of foreground dust grains are suggested to be mainly responsible for the both differential reddening and polarization towards NGC 6823. The majority of the observed stars do not show the evidence of intrinsic polarization in their light.



قيم البحث

اقرأ أيضاً

125 - B. Riaz , E. L. Martin , R. Tata 2011
NGC 6823 is a young open cluster that lies at a distance of ~2 kpc in the Vulpecula OB1 association. Previous studies using CCD photometry and spectroscopy have identified a Trapezium system of bright O- and B-type stars at its center. We present opt ical, near-infrared and Spitzer photometric observations of the cluster. Our survey reaches down to I~22 mag and Ks~18 mag. There is significant differential reddening within the cluster. We find a bimodal distribution for Av, with a peak at ~3 mag and a broader peak at ~10 mag. We find a ~20% fraction of Class I/Class II young stellar objects (YSOs) in the cluster, while a large 80% fraction of the sources have a Class III classification. We have made use of the IPHAS survey in order to probe the strength in Halpha emission for this large population of Class III sources. Nearly all of the Class III objects have photospheric (r-Halpha) colors, implying an absence of Halpha in emission. This large population of Class III sources is thus likely the extincted field star population rather than the diskless YSOs in the cluster. There is a higher concentration of the Class I/II systems in the eastern region of the cluster and close to the central Trapezium. The western part of the cluster mostly contains Class III/field stars and seems devoid of disk sources. We find evidence of a pre-main sequence population in NGC 6823, in addition to an upper main-sequence population. The pre-main sequence population mainly consists of young disk sources with ages between ~1-5 Myr, and at lower masses of ~0.1-0.4 Msun. There may be a possible mass dependent age spread in the cluster, with the older stars being more massive than the younger ones. The presence of young disk sources in NGC 6823 indicates similar star formation properties in the outer regions of the Galaxy as observed for young clusters in the solar neighborhood.
NGC 7067 is a young open cluster located in the direction between the first and the second Galactic quadrants and close to the Perseus spiral arm. This makes it useful for studies of the nature of the Milky Way spiral arms. Stromgren photometry taken with the Wide Field Camera at the Isaac Newton Telescope allowed us to compute individual physical parameters for the observed stars and hence to derive clusters physical parameters. Spectra from the 1.93-m telescope at the Observatoire de Haute-Provence helped to check and improve the results. We obtained photometry for 1233 stars, individual physical parameters for 515 and spectra for 9 of them. The 139 selected cluster members lead to a cluster distance of 4.4+/-0.4 kpc, with an age below log10(t(yr))=7.3 and a present Mass of 1260+/-160Msun. The morphology of the data reveals that the centre of the cluster is at (ra,dec)=(21:24:13.69,+48:00:39.2) J2000, with a radius of 6.1arcsec. Stromgren and spectroscopic data allowed us to improve the previous parameters available for the cluster in the literature.
NGC 6067 is a young open cluster hosting the largest population of evolved stars among known Milky Way clusters in the 50-150 Ma age range. It thus represents the best laboratory in our Galaxy to constrain the evolutionary tracks of 5-7 M$_{odot}$ st ars. We have used high-resolution spectra of a large sample of bright cluster members (45), combined with archival photometry, to obtain accurate parameters for the cluster as well as stellar atmospheric parameters. We derive a distance of 1.78$pm$0.12 kpc, an age of 90$pm$20 Ma and a tidal radius of 14.8$^{6.8}_{3.2}$ arcmin. We estimate an initial mass above 5700 M$_{odot}$, for a present-day evolved population of two Cepheids, two A supergiants and 12 red giants with masses $approx$6 M$_{odot}$. We also determine chemical abundances of Li, O, Na, Mg, Si, Ca, Ti, Ni, Rb, Y and Ba for the red clump stars. We find a supersolar metallicity, [Fe/H]=+0.19$pm$0.05, and a homogeneus chemical composition, consistent with the Galactic metallicity gradient. The presence of a Li-rich red giant, star 276 with A(Li)=2.41, is also detected. An over-abundance of Ba is found, supporting the enhanced $s$-process. The ratio of yellow to red giants is much smaller than one, in agreement with models with moderate overshooting, but the properties of the cluster Cepheids do not seem consistent with current Padova models for supersolar metallicity.
We present time series photometry of 57 variable stars in the cluster region NGC 7380. The association of these variable stars to the cluster NGC 7380 has been established on the basis of two colour diagrams and colour-magnitude diagrams. Seventeen s tars are found to be main-sequence variables, which are mainly B type stars and are classified as slowly pulsating B stars, $beta$ Cep or $delta$ Scuti stars. Some of them may belong to new class variables as discussed by Mowlavi et al. (2013) and Lata et al. (2014). Present sample also contains 14 pre-main-sequence stars, whose ages and masses are found to be mostly $lesssim$ 5 Myr and range 0.60 $lesssim M/M_{odot} lesssim$ 2.30 and hence should be T-Tauri stars. About half of the weak line T-Tauri stars are found to be fast rotators with a period of $lesssim$ 2 days as compared to the classical T-Tauri stars. Some of the variables belong to the field star population.
We present the results of CCD $UBV$ photometric and spectroscopic observations of the open cluster NGC 225. In order to determine the structural parameters of NGC 225, we calculated the stellar density profile in the clusters field. We estimated the probabilities of the stars being physical members of the cluster using the existing astrometric data. The most likely members of the cluster were used in the determination of the astrophysical parameters of the cluster. We calculated the mean radial velocity of the cluster as $V_{r}=-8.3pm 5.0$ km s$^{-1}$ from the optical spectra of eight stars in the clusters field. Using the U-B vs B-V two-colour diagram and UV excesses of the F-G type main-sequence stars, the reddening and metallicity of NGC 225 were inferred as $E(B-V)=0.151pm 0.047$ mag and $[Fe/H]=-0.11pm 0.01$ dex, respectively. We fitted the colour-magnitude diagrams of NGC 225 with the PARSEC isochrones and derived the distance modulus, distance and age of the cluster as $mu_{V}=9.3pm 0.07$ mag, d=585$pm$20 pc and $t=900pm 100$ Myr, respectively. We also estimated the galactic orbital parameters and space velocity components of the cluster and found that the cluster has a slightly eccentric orbit of $e=0.07pm 0.01$ and an orbital period of $P_{orb}= 255pm 5$ Myr.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا