ترغب بنشر مسار تعليمي؟ اضغط هنا

Broadband multi-wavelength campaign on PKS 2005-489

145   0   0.0 ( 0 )
 نشر من قبل Sarah Kaufmann
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The spectral energy distribution (SED) of high-frequency peaked BL Lac objects (HBL) is characterized by two peaks: one in the UV-X-ray and one in the GeV-TeV regime. An interesting object for analyzing these broadband characteristics is PKS 2005-489, which in 2004 showed the softest TeV spectrum ever measured. In 2009, a multi-wavelength campaign has been conducted with, for the first time, simultaneous observations by H.E.S.S. (TeV), Fermi/LAT (GeV), RXTE (keV), Swift (keV, UV, optical) and ATOM (optical) to cover the two peaks of the SED. During this campaign PKS 2005-489 underwent a high state in all wavebands which gives the opportunity to study in detail the emission processes of a high state of this interesting HBL.



قيم البحث

اقرأ أيضاً

The high-frequency peaked BL Lac object PKS 2005-489 was the target of a multi-wavelength campaign with simultaneous observations in the TeV gamma-ray (H.E.S.S.), GeV gamma-ray (Fermi/LAT), X-ray (RXTE, Swift), UV (Swift) and optical (ATOM, Swift) ba nds. This campaign was carried out during a high flux state in the synchrotron regime. The flux in the optical and X-ray bands reached the level of the historical maxima. The hard GeV spectrum observed with Fermi/LAT connects well to the very high energy (VHE, E>100GeV) spectrum measured with H.E.S.S. with a peak energy between ~5 and 500 GeV. Compared to observations with contemporaneous coverage in the VHE and X-ray bands in 2004, the X-ray flux was ~50 times higher during the 2009 campaign while the TeV gamma-ray flux shows marginal variation over the years. The spectral energy distribution during this multi-wavelength campaign was fit by a one zone synchrotron self-Compton model with a well determined cutoff in X-rays. The parameters of a one zone SSC model are inconsistent with variability time scales. The variability behaviour over years with the large changes in synchrotron emission and small changes in the inverse Compton emission does not warrant an interpretation within a one-zone SSC model despite an apparently satisfying fit to the broadband data in 2009.
In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting superm assive black hole of mass approximately 6.5 x 10^9 M_solar. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87s spectrum. We can exclude that the simultaneous gamma-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the gamma-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded.
Outflows in active galaxies (AGNs) are common, although their launching mechanism, location, and physical impact on the host galaxy remain controversial. We conducted a multiwavelength six-month campaign to observe the nearby Seyfert galaxy NGC 7469 with several observatories in order to better understand and quantify the outflow in this AGN. We report on the time-integrated line-resolved X-ray spectrum of NGC 7469 obtained with the Reflection Grating Spectrometer (RGS) on board XMM-Newton. We use the RGS spectrum to discern the many AGN outflow components. A global fit is applied to obtain their physical parameters. We find that the AGN wind can be well described by three narrow velocity components at -650, -950, and -2050 km/s. The RGS clearly resolves the -20 50 km/s component in C5+ Ly$alpha$, while the -650 km/s and -950 km/s velocities are blended. Similar velocities are resolved in the UV. The H-equivalent column densities of these components are, respectively, NH = 7x10^20, 2.2x10^21, and 10^20 cm^-2, for a total of 3x10^21 cm^-2. The -650 km/s component shows a broad ionisation distribution. We identify a photo-ionised emission component blue-shifted by -450 km/s which we ascribe to the same outflow that produces the absorption lines. The elemental abundance ratios of C, N, Ne, S, and Fe to O in the outflow tend to be between 1 - 2 times solar. Preliminary estimates of the absorber distance from the AGN center suggest it is at least a few pc away from the center, but more advanced methods need to be applied in order to obtain better constraints. The complex X-ray spectrum of NGC 7469 demonstrates the richness of high energy phenomena taking place in AGN cores. The subtle spectroscopic differences between the various components require deep, high-resolution observations, such as the present RGS spectrum, if one is to resolve them and perform quantitative plasma diagnostics.
106 - M. L. Ahnen 2017
The extragalactic VHE gamma-ray sky is rich in blazars. These are jetted active galactic nuclei viewed at a small angle to the line-of-sight. Only a handful of objects viewed at a larger angle are known so far to emit above 100 GeV. Multi-wavelength studies of such objects up to the highest energies provide new insights into the particle and radiation processes of active galactic nuclei. We report the results from the first multi-wavelength campaign observing the TeV detected nucleus of the active galaxy IC 310, whose jet is observed at a moderate viewing angle of 10 deg - 20 deg. The multi-instrument campaign was conducted between 2012 Nov. and 2013 Jan., and involved observations with MAGIC, Fermi, INTEGRAL, Swift, OVRO, MOJAVE and EVN. These observations were complemented with archival data from the AllWISE and 2MASS catalogs. A one-zone synchrotron self-Compton model was applied to describe the broad-band spectral energy distribution. IC 310 showed an extraordinary TeV flare at the beginning of the campaign, followed by a low, but still detectable TeV flux. Compared to previous measurements, the spectral shape was found to be steeper during the low emission state. Simultaneous observations in the soft X-ray band showed an enhanced energy flux state and a harder-when-brighter spectral shape behaviour. No strong correlated flux variability was found in other frequency regimes. The broad-band spectral energy distribution obtained from these observations supports the hypothesis of a double-hump structure. The harder-when-brighter trend in the X-ray and VHE emission is consistent with the behaviour expected from a synchrotron self-Compton scenario. The contemporaneous broad-band spectral energy distribution is well described with a one-zone synchrotron self-Compton model using parameters that are comparable to those found for other gamma-ray-emitting misaligned blazars.
137 - L.E.H. Godfrey 2012
We present a detailed study of the X-ray, optical and radio emission from the jet, lobes and core of the quasar PKS 2101-490 as revealed by new Chandra, HST and ATCA images. We extract the radio to X-ray spectral energy distributions from seven regio ns of the 13 arcsecond jet, and model the jet X-ray emission in terms of Doppler beamed inverse Compton scattering of the cosmic microwave background (IC/CMB) for a jet in a state of equipartition between particle and magnetic field energy densities. This model implies that the jet remains highly relativistic hundreds of kpc from the nucleus, with a bulk Lorentz factor Gamma ~ 6 and magnetic field of order 30 microGauss. We detect an apparent radiative cooling break in the synchrotron spectrum of one of the jet knots, and are able to interpret this in terms of a standard one-zone continuous injection model, based on jet parameters derived from the IC/CMB model. However, we note apparent substructure in the bright optical knot in one of the HST bands. We confront the IC/CMB model with independent estimates of the jet power, and find that the IC/CMB model jet power is consistent with the independent estimates, provided that the minimum electron Lorentz factor gamma_min > 50, and the knots are significantly longer than the jet width, as implied by de-projection of the observed knot lengths.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا