ترغب بنشر مسار تعليمي؟ اضغط هنا

Pulsar observations with the Fermi LAT: what we have seen

145   0   0.0 ( 0 )
 نشر من قبل Lucas Guillemot
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A year after emph{Fermi} was launched, the number of known gamma-ray pulsars has increased dramatically. For the first time, a sizable population of pulsars has been discovered in gamma-ray data alone. For the first time, millisecond pulsars have been confirmed as powerful sources of gamma-ray emission, and a whole population of these objects is seen with the LAT. The remaining gamma-ray pulsars are young pulsars, discovered via an efficient collaboration with radio and X-ray telescopes. It is now clear that a large fraction of the nearby energetic pulsars are gamma-ray emitters, whose luminosity grows with the spin-down energy loss rate. Many previously unidentified EGRET sources turn out to be pulsars. Many of the detected pulsars are found to be powering pulsar wind nebulae, and some are associated with TeV sources. The emph{Fermi} LAT is expected to detect more pulsars in gamma rays in the coming years, while multi-wavelength follow ups should detect emph{Fermi}-discovered pulsars. The data already revealed that gamma-ray pulsars generally emit fan-like beams sweeping over a large fraction of the sky and produced in the outer magnetosphere.



قيم البحث

اقرأ أيضاً

Blind Searches of Fermi Large Area Telescope (LAT) data have resulted in the discovery of 24 gamma-ray pulsars in the first year of survey operations, most of which remain undetected in radio, despite deep radio follow-up searches. I summarize the la test Fermi LAT blind search efforts and results, including the discovery of a new Geminga-like pulsar, PSR J0734-1559. Finally, I discuss some of the challenges faced in carrying out these searches into the future, as well as the prospects for finding additional pulsars among the large number of LAT unassociated sources.
We report the detection of radio emission from PSR J1311-3430, the first millisecond pulsar discovered in a blind search of Fermi Large Area Telescope (LAT) gamma-ray data. We detected radio pulsations at 2 GHz, visible for <10% of ~4.5-hrs of observ ations using the Green Bank Telescope (GBT). Observations at 5 GHz with the GBT and at several lower frequencies with Parkes, Nancay, and the Giant Metrewave Radio Telescope resulted in non-detections. We also report the faint detection of a steep spectrum continuum radio source (0.1 mJy at 5 GHz) in interferometric imaging observations with the Jansky Very Large Array. These detections demonstrate that PSR J1311-3430, is not radio quiet and provides additional evidence that the radio beaming fraction of millisecond pulsars is very large. The radio detection yields a distance estimate of 1.4 kpc for the system, yielding a gamma-ray efficiency of 30%, typical of LAT-detected MSPs. We see apparent excess delay in the radio pulsar as the pulsar appears from eclipse and we speculate on possible mechanisms for the non-detections of the pulse at other orbital phases and observing frequencies.
Taking advantage of 10 years of Fermi-LAT data, we perform a new and deep analysis of the pulsar wind nebula (PWN) HESS J1825-137. We present the results of the spectral analysis and of the first energy-resolved morphological study of the PWN HESS J1 825-137 from 1 GeV to 1 TeV. This PWN is an archetypal system making it a perfect laboratory for studying particle transport mechanisms. Combining this analysis with recent H.E.S.S. results enables a more complete picture of the nebula to emerge.
We report the Fermi Large Area Telescope discovery of gamma-ray pulsations from the 22.7 ms pulsar A in the double pulsar system J0737-3039A/B. This is the first mildly recycled millisecond pulsar (MSP) detected in the GeV domain. The 2.7 s companion object PSR J0737-3039B is not detected in gamma rays. PSR J0737-3039A is a faint gamma-ray emitter, so that its spectral properties are only weakly constrained; however, its measured efficiency is typical of other MSPs. The two peaks of the gamma-ray light curve are separated by roughly half a rotation and are well offset from the radio and X-ray emission, suggesting that the GeV radiation originates in a distinct part of the magnetosphere from the other types of emission. From the modeling of the radio and the gamma-ray emission profiles and the analysis of radio polarization data, we constrain the magnetic inclination $alpha$ and the viewing angle $zeta$ to be close to 90$^circ$, which is consistent with independent studies of the radio emission from PSR J0737-3039A. A small misalignment angle between the pulsars spin axis and the systems orbital axis is therefore favored, supporting the hypothesis that pulsar B was formed in a nearly symmetric supernova explosion as has been discussed in the literature already.
The supernova remnant (SNR) W49B originated from a core-collapse supernova that occurred between one and four thousand years ago, and subsequently evolved into a mixed-morphology remnant, which is interacting with molecular clouds (MC). $gamma$-ray o bservations of SNR/MC associations are a powerful tool to constrain the origin of Galactic cosmic-rays, as they can probe the acceleration of hadrons through their interaction with the surrounding medium and subsequent emission of non-thermal photons. The detection of a $gamma$-ray source coincident with W49B at very high energies (VHE; E > 100 GeV) with the H.E.S.S. Cherenkov telescopes is reported together with a study of the source with 5 years of Fermi-LAT high energy $gamma$-ray (0.06 - 300 GeV) data. The smoothly-connected combined source spectrum, measured from 60 MeV to multi-TeV energies, shows two significant spectral breaks at $304pm20$ MeV and $8.4_{-2.5}^{+2.2}$ GeV, the latter being constrained by the joint fit from the two instruments. The detected spectral features are similar to those observed in several other SNR/MC associations and are found to be indicative of $gamma$-ray emission produced through neutral-pion decay.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا