ﻻ يوجد ملخص باللغة العربية
We study the consequences of the constant-temperature behaviour of nuclei in the superfluid regime for the exchange of excitation energy between two nuclei in thermal contact. This situation is realized at the scission configuration of fission at moderate excitation energies. It is shown that all available excitation energy is transferred to the colder fragment. This effect explains why an increase of excitation energy is translated into an increase of the number of emitted neutrons for the heavy fission fragments only. This observation remained unexplained up to now.
Recent progresses in the description of the latter stage of nuclear fission are reported. Dynamical effects during the descent of the potential towards scission and in the formation of the fission fragments are studied with the time-dependent Hartree
A simplified, though realistic, model describing two receding and accelerating fission fragments, due to their mutual Coulomb repulsion, shows that fission fragments share excitation energy well after they ceased to exchange nucleons. This mechanism
The even-odd effect in fission is explained by a model based on statistical mechanics. It reveals that the variation of the even-odd effect with the mass of the fissioning nucleus and the increase towards asymmetric splits is due to the important sta
We study how the excitation energy of the fully accelerated fission fragments is built up. It is stressed that only the intrinsic excitation energy available before scission can be exchanged between the fission fragments to achieve thermal equilibriu
We discuss properties of the method based on time dependent superfluid local density approximation (TDSLDA) within an application to induced fission of 240Pu and surrounding nuclei. Various issues related to accuracy of time evolution and the determi