ﻻ يوجد ملخص باللغة العربية
We present new optical and near infrared (NIR) photometry and spectroscopy of the type IIP supernova, SN 2004et. In combination with already published data, this provides one of the most complete studies of optical and NIR data for any type IIP SN from just after explosion to +500 days. The contribution of the NIR flux to the bolometric light curve is estimated to increase from 15% at explosion to around 50% at the end of the plateau and then declines to 40% at 300 days. SN 2004et is one of the most luminous IIP SNe which has been well studied, and with a luminosity of log L = 42.3 erg/s, it is 2 times brighter than SN 1999em. We provide parametrised bolometric corrections as a function of time for SN 2004et and three other IIP SNe that have extensive optical and NIR data, which can be used as templates for future events. We compare the physical parameters of SN 2004et with those of other IIP SNe and find kinetic energies spanning the range of 10^50-10^51 ergs. We compare the ejected masses calculated from hydrodynamic models with the progenitor masses and limits derived from prediscovery images. Some of the ejected mass estimates are significantly higher than the progenitor mass estimates, with SN 2004et showing perhaps the most serious mass discrepancy. With current models, it appears difficult to reconcile 100 day plateau lengths and high expansion velocities with the low ejected masses of 5-6 Msun implied from 7-8 Msun progenitors. The nebular phase is studied using very late time HST photometry, along with optical and NIR spectroscopy. The light curve shows a clear flattening at 600 days in the optical and the NIR, which is likely due to the ejecta impacting on the CSM. We further show that the [Oi] 6300,6364 Angstrom line strengths of four type IIP SNe imply ejected oxygen masses of 0.5-1.5 Msun.
We present a study of SN 2009js in NGC 918. Multi-band Kanata optical photometry covering the first ~120 days show the source to be a Type IIP SN. Reddening is dominated by that due to our Galaxy. One-year-post-explosion photometry with the NTT, and
The explosion energy and the ejecta mass of a type IIP supernova (SN IIP) derived from hydrodynamic simulations are principal parameters of the explosion theory. However, the number of SNe IIP studied by hydrodynamic modeling is small. Moreover, some
We present X-ray, broad band optical and low frequency radio observations of the bright type IIP supernova SN 2004et. The cxo observed the supernova at three epochs, and the optical coverage spans a period of $sim$ 470 days since explosion. The X-ray
We present optical and near-infrared photometric and spectroscopic observations of SN 2013ej, in galaxy M74, from 1 to 450 days after the explosion. SN 2013ej is a hydrogen-rich supernova, classified as a Type IIL due to its relatively fast decline f
We present the results the photometric observations of the Type IIP supernova SN 2012aw obtained for the time interval from 7 till 371 days after the explosion. Using the previously published values of the photospheric velocities weve computed the hy