ﻻ يوجد ملخص باللغة العربية
We present a preliminary analysis of the HI properties of early-type galaxies in the ATLAS3D sample. Using WSRT data for ~100 galaxies outside the Virgo cluster and data from the Alfalfa project for galaxies inside Virgo, we discuss the dependence of HI properties on environment. We detect HI in about half of the galaxies outside Virgo. For these systems, the HI morphology and kinematics change as a function of environment, going from regular, rotating systems around isolated galaxies to progressively more disturbed structures for galaxies with neighbours or in groups. In denser environment, inside Virgo, nearly none of the galaxies contains HI. We discuss future work in this field which will be enabled by next-generation, pre-SKA radio instruments. We present a simulated Apertif HI observation of an ATLAS3D early-type galaxy, showing how its appearance and detection level vary as a function of redshift.
We present an analysis of deep WSRT observations of the HI in 33 nearby early-type galaxies selected from a sample studied earlier at optical wavelengths with the SAURON integral-field spectrograph. The sample covers both field environments and the V
(Abridged) We present a detailed study of the stellar populations of a volume-limited sample of early-type galaxies from SDSS, across a range of environments -- defined as the mass of the host dark matter halo. The stellar populations are explored th
The all-sky coverage of the Planck Early Release Compact Source Catalogue (ERCSC) provides an unsurpassed survey of galaxies at submillimetre (submm) wavelengths, representing a major improvement in the numbers of galaxies detected, as well as the ra
We present HI observations of 68 early-type disk galaxies from the WHISP survey. They have morphological types between S0 and Sab and absolute B-band magnitudes between -14 and -22. These galaxies form the massive, high surface-brightness extreme of
Early-type galaxies (ETGs) are observed to be more compact, on average, at $z gtrsim 2$ than at $zsimeq 0$, at fixed stellar mass. Recent observational works suggest that such size evolution could reflect the similar evolution of the host dark matter