ﻻ يوجد ملخص باللغة العربية
We use high-resolution adaptive optics (AO) imaging on the Keck II telescope to study the gravitational lens B0128+437 in unprecedented detail, allowing us to resolve individual lensed quasar components and, for the first time, detect and measure properties of the lensing galaxy. B0128+437 is a small separation lens with known flux-ratio and astrometric anomalies. We discuss possible causes for these anomalies, including the presence of substructure in the lensing galaxy, propagation effects due to dust and a turbulent interstellar medium, and gravitational microlensing. This work on B0128 demonstrates that AO will be an essential tool for studying the many new small-separation lenses expected from future surveys.
High resolution MERLIN observations of a newly-discovered four-image gravitational lens system, B0128+437, are presented. The system was found after a careful re-analysis of the entire CLASS dataset. The MERLIN observations resolve four components in
We present the measurement of the Hubble Constant, $H_0$, with three strong gravitational lens systems. We describe a blind analysis of both PG1115+080 and HE0435-1223 as well as an extension of our previous analysis of RXJ1131-1231. For each lens, w
Accurate and precise measurements of the Hubble constant are critical for testing our current standard cosmological model and revealing possibly new physics. With Hubble Space Telescope (HST) imaging, each strong gravitational lens system with measur
A simple optical to mid-IR color selection, R-[24] > 14, i.e. f_nu(24) / f_nu(R) > 1000, identifies highly dust obscured galaxies (DOGs) with typical redshifts of z~2 +/- 0.5. Extreme mid-IR luminosities (L_{IR} > 10^{12-14}) suggest that DOGs are po