ترغب بنشر مسار تعليمي؟ اضغط هنا

Adaptive Optics Observations of B0128+437: A Low-Mass, High-Redshift Gravitational Lens

111   0   0.0 ( 0 )
 نشر من قبل David Lagattuta
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use high-resolution adaptive optics (AO) imaging on the Keck II telescope to study the gravitational lens B0128+437 in unprecedented detail, allowing us to resolve individual lensed quasar components and, for the first time, detect and measure properties of the lensing galaxy. B0128+437 is a small separation lens with known flux-ratio and astrometric anomalies. We discuss possible causes for these anomalies, including the presence of substructure in the lensing galaxy, propagation effects due to dust and a turbulent interstellar medium, and gravitational microlensing. This work on B0128 demonstrates that AO will be an essential tool for studying the many new small-separation lenses expected from future surveys.



قيم البحث

اقرأ أيضاً

High resolution MERLIN observations of a newly-discovered four-image gravitational lens system, B0128+437, are presented. The system was found after a careful re-analysis of the entire CLASS dataset. The MERLIN observations resolve four components in a characteristic quadruple-image configuration; the maximum image separation is 542 mas and the total flux density is 48 mJy at 5 GHz. A best-fit lens model with a singular isothermal ellipsoid results in large errors in the image positions. A significantly improved fit is obtained after the addition of a shear component, suggesting that the lensing system is more complex and may consist of multiple deflectors. The integrated radio spectrum of the background source indicates that it is a GigaHertz-Peaked Spectrum (GPS) source. It may therefore be possible to resolve structure within the radio images with deep VLBI observations and thus better constrain the lensing mass distribution.
We present the measurement of the Hubble Constant, $H_0$, with three strong gravitational lens systems. We describe a blind analysis of both PG1115+080 and HE0435-1223 as well as an extension of our previous analysis of RXJ1131-1231. For each lens, w e combine new adaptive optics (AO) imaging from the Keck Telescope, obtained as part of the SHARP AO effort, with Hubble Space Telescope (HST) imaging, velocity dispersion measurements, and a description of the line-of-sight mass distribution to build an accurate and precise lens mass model. This mass model is then combined with the COSMOGRAIL measured time delays in these systems to determine $H_{0}$. We do both an AO-only and an AO+HST analysis of the systems and find that AO and HST results are consistent. After unblinding, the AO-only analysis gives $H_{0}=82.8^{+9.4}_{-8.3}~rm km,s^{-1},Mpc^{-1}$ for PG1115+080, $H_{0}=70.1^{+5.3}_{-4.5}~rm km,s^{-1},Mpc^{-1}$ for HE0435-1223, and $H_{0}=77.0^{+4.0}_{-4.6}~rm km,s^{-1},Mpc^{-1}$ for RXJ1131-1231. The joint AO-only result for the three lenses is $H_{0}=75.6^{+3.2}_{-3.3}~rm km,s^{-1},Mpc^{-1}$. The joint result of the AO+HST analysis for the three lenses is $H_{0}=76.8^{+2.6}_{-2.6}~rm km,s^{-1},Mpc^{-1}$. All of the above results assume a flat $Lambda$ cold dark matter cosmology with a uniform prior on $Omega_{textrm{m}}$ in [0.05, 0.5] and $H_{0}$ in [0, 150] $rm km,s^{-1},Mpc^{-1}$. This work is a collaboration of the SHARP and H0LiCOW teams, and shows that AO data can be used as the high-resolution imaging component in lens-based measurements of $H_0$. The full time-delay cosmography results from a total of six strongly lensed systems are presented in a companion paper.
Accurate and precise measurements of the Hubble constant are critical for testing our current standard cosmological model and revealing possibly new physics. With Hubble Space Telescope (HST) imaging, each strong gravitational lens system with measur ed time delays can allow one to determine the Hubble constant with an uncertainty of $sim 7%$. Since HST will not last forever, we explore adaptive-optics (AO) imaging as an alternative that can provide higher angular resolution than HST imaging but has a less stable point spread function (PSF) due to atmospheric distortion. To make AO imaging useful for time-delay-lens cosmography, we develop a method to extract the unknown PSF directly from the imaging of strongly lensed quasars. In a blind test with two mock data sets created with different PSFs, we are able to recover the important cosmological parameters (time-delay distance, external shear, lens mass profile slope, and total Einstein radius). Our analysis of the Keck AO image of the strong lens system RXJ1131-1231 shows that the important parameters for cosmography agree with those based on HST imaging and modeling within 1-$sigma$ uncertainties. Most importantly, the constraint on the model time-delay distance by using AO imaging with $0.045$resolution is tighter by $sim 50%$ than the constraint of time-delay distance by using HST imaging with $0.09$when a power-law mass distribution for the lens system is adopted. Our PSF reconstruction technique is generic and applicable to data sets that have multiple nearby point sources, enabling scientific studies that require high-precision models of the PSF.
312 - J. Melbourne , K. Brand 2009
A simple optical to mid-IR color selection, R-[24] > 14, i.e. f_nu(24) / f_nu(R) > 1000, identifies highly dust obscured galaxies (DOGs) with typical redshifts of z~2 +/- 0.5. Extreme mid-IR luminosities (L_{IR} > 10^{12-14}) suggest that DOGs are po wered by a combination of AGN and star formation, possibly driven by mergers. In an effort to compare their photometric properties with their rest frame optical morphologies, we obtained high spatial resolution (0.05 -0.1) Keck Adaptive Optics (AO) K-band images of 15 DOGs. The images reveal a wide range of morphologies, including: small exponential disks (8 of 15), small ellipticals (4 of 15), and unresolved sources (2 of 15). One particularly diffuse source could not be classified because of low signal to noise ratio. We find a statistically significant correlation between galaxy concentration and mid-IR luminosity, with the most luminous DOGs exhibiting higher concentration and smaller physical size. DOGs with high concentration also tend to have spectral energy distributions (SEDs) suggestive of AGN activity. Thus central AGN light may be biasing the morphologies of the more luminous DOGs to higher concentration. Conversely, more diffuse DOGs tend to show an SED shape suggestive of star formation. Two of fifteen in the sample show multiple resolved components with separations of ~1 kpc, circumstantial evidence for ongoing mergers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا