ترغب بنشر مسار تعليمي؟ اضغط هنا

Physics of Electroweak Interactions with Nuclei

260   0   0.0 ( 0 )
 نشر من قبل Giuseppina Orlandini
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this series of lectures it is illustrated how one can study the strong dynamics of nuclei by means of the electroweak probe. In particular, the most important steps to derive the cross sections in first order perturbation theory are reviewed. In the derivation the focus is put on the main ingredients entering the hadronic part (response functions), i.e. the initial and final states of the system and the operators relevant for the reaction. Emphasis is put on the electromagnetic interaction with few-nucleon systems. The Lorentz integral transform method to calculate the response functions ab initio is described. A few examples of the comparison between theoretical and experimental results are shown. The dependence of the response functions on the nuclear interaction and in particular on three-body forces is emphasized.



قيم البحث

اقرأ أيضاً

46 - Saori Pastore 2017
The past decade has witnessed tremendous progress in the theoretical and computational tools that produce our understanding of nuclei. A number of microscopic calculations of nuclear electroweak structure and reactions have successfully explained the available experimental data, yielding a complex picture of the way nuclei interact with electroweak probes. This achievement is of great interest from the pure nuclear-physics point of view. But it is of much broader interest too, because the level of accuracy and confidence reached by these calculations opens up the concrete possibility of using nuclei to address open questions in other sub-fields of physics, such as, understanding the fundamental properties of neutrinos, or the particle nature of dark matter. In this talk, I will review recent progress in microscopic calculations of electroweak properties of light nuclei, including electromagnetic moments, form factors and transitions in between low-lying nuclear states along with preliminary studies for single- and double-beta decay rates. I will illustrate the key dynamical features required to explain the available experimental data, and, if time permits, present a novel framework to calculate neutrino-nucleus cross sections for $A>12$ nuclei.
105 - Giampaolo Co 2004
The last few years activity of the Italian community concerning nuclear physics with electroweak probes is reviewed.Inclusive quasi-elastic electron-scattering, photon end electron induced one- and two-nucleon emission are considered. The scattering of neutrinos off nuclei in the quasi-elastic region is also discussed.
Neutrino-induced pion production on nuclear targets is the major inelastic channel in all present-day neutrino-oscillation experiments. It has to be understood quantitatively in order to be able to reconstruct the neutrino-energy at experiments such as MiniBooNE or K2K and T2K. We report here results of cross section calculations for both this channel and for quasielastic scattering within the semiclassical GiBUU method. This methods contains scattering, both elastic and inelastic, absorption and side-feeding of channels all in a unitary, common theoretical framework and code. We find that charged current quasielastic scattering (CCQE) and $1 pi$ production are closely entangled in actual experiments, due to final state interactions of the scattered nucleons on one hand and of the $Delta$ resonances and pions, on the other hand. We discuss the uncertainties in the elementary pion production cross sections from ANL and BNL. We find the surprising result that the recent $1 pi$ production cross section data from MiniBooNE are well described by calculations without any FSI. For higher energies we study the validity of the Bloom-Gilman quark-hadron duality for both electron- and neutrino-induced reactions. While this duality holds quite well for nucleon targets, for nuclear targets the average resonance contributions to the structure function $F_2$ are always lower than the DIS values. This result indicates a significant impact of nuclear effects on observables, reducing the cross section and structure functions by at least 30-40% and changing the form of various distributions.
174 - S. X. Nakamura 2009
We have developed a dynamical model for a unified description of the pion-nucleus scattering and photo- and neutrino-induced coherent pion production on nuclei. Our approach is based on a combined use of the Sato-Lee model for the electroweak pion pr oduction on a single nucleon and the Delta-hole model of pion-nucleus scattering. Numerical calculations are carried out for the case of the C12 target. After testing our model with the use of the pion photo-production data, we confront our predictions of the neutrino-induced coherent pion production reactions with the recent data from K2K and MiniBooNE.
227 - M. A. Caprio , F. Q. Luo , K. Cai 2014
Generalized seniority provides a truncation scheme for the nuclear shell model, based on pairing correlations, which offers the possibility of dramatically reducing the dimensionality of the nuclear shell-model problem. Systematic comparisons against results obtained in the full shell-model space are required to assess the viability of this scheme. Here, we extend recent generalized seniority calculations for semimagic nuclei, the Ca isotopes, to open-shell nuclei, with both valence protons and valence neutrons. The even-mass Ti and Cr isotopes are treated in a full major shell and with realistic interactions, in the generalized seniority scheme with one broken proton pair and one broken neutron pair. Results for level energies, orbital occupations, and electromagnetic observables are compared with those obtained in the full shell-model space. We demonstrate that, even for the Ti isotopes, significant benefit would be obtained in going beyond the approximation of one broken pair of each type, while the Cr isotopes require further broken pairs to provide even qualitative accuracy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا