ترغب بنشر مسار تعليمي؟ اضغط هنا

Moessbauer antineutrinos: some basic considerations

138   0   0.0 ( 0 )
 نشر من قبل Walter Potzel
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Walter Potzel




اسأل ChatGPT حول البحث

Basic aspects of phononless resonant capture of monoenergetic electron antineutrinos (Moessbauer antineutrinos) emitted in boundstate beta-decay in the 3H - 3He system are considered. It is shown that stochastic magnetic relaxation phenomena as well as the direct influence of solid-state effects on the energy of the electron antineutrino will cause line broadening by a factor of more than 10^(13). Lattice expansion and contraction after the transformation of the nucleus will drastically reduce the probability for phononless transitions. Thus, the observation of Moessbauer electron antineutrinos of the 3H - 3He system will most probably be unsuccessful. As a possible alternative, the Rare-Earth system 163Ho - 163Dy is briefly discussed.



قيم البحث

اقرأ أيضاً

135 - George Sterman 2008
This is a brief review of some of the basic concepts of perturbative QCD, including infrared safety and factorization, relating them to more familiar ideas from quantum mechanics and relativity. It is intended to offer perspective on methods and term s whose use is commonplace, but whose physical origins are sometimes obscure.
125 - Walter Potzel 2010
Basic questions concerning phononless resonant capture of monoenergetic electron antineutrinos (Mossbauer antineutrinos) emitted in bound-state beta-decay in the 3H - 3He system are discussed. It is shown that lattice expansion and contraction after the transformation of the nucleus will drastically reduce the probability of phononless transitions and that various solid-state effects will cause large line broadening. As a possible alternative, the rare-earth system 163Ho - 163Dy is favoured. Mossbauer-antineutrino experiments could be used to gain new and deep insights into several basic problems in neutrino physics.
Candogan et al. (2011) provide an orthogonal direct-sum decomposition of finite games into potential, harmonic and nonstrategic components. In this paper we study the issue of decomposing games that are strategically equivalent from a game-theoretica l point of view, for instance games obtained via transformations such as duplications of strategies or positive affine mappings of of payoffs. We show the need to define classes of decompositions to achieve commutativity of game transformations and decompositions.
In this work the low energy kaon-hyperon interaction is studied with nonlinear chiral invariant Lagragians considering kaons, hyperons, and the corresponding resonances in the intermediate states. We show the basic formalism to calculate the total cr oss sections, angular distributions, and some diagrams of interest.
We currently know about 30 magnetars: seemingly isolated neutron stars whose properties can be (in part) comprehended only acknowledging that they are endowed with magnetic fields of complex morphology and exceptional intensity-at least in some compo nents of the field structure. Although magnetars represent only a small percentage of the known isolated neutron stars, there are almost certainly many more of them, since most magnetars were discovered in transitory phases called outbursts, during which they are particularly noticeable. In outburst, in fact, a magnetar can be brighter in X-rays by orders of magnitude and usually emit powerful bursts of hard-X/soft-gamma-ray photons that can be detected almost everywhere in the Galaxy with all-sky monitors such as those on board the Fermi satellite or the Neil Gehrels Swift Observatory. Magnetars command great attention because the large progress that has been made in their understanding is proving fundamental to fathom the whole population of isolated neutron stars, and because, due to their extreme properties, they are relevant for a vast range of different astrophysical topics, from the study of gamma-ray bursts and superluminous supernovae, to ultraluminous X-ray sources, fast radio bursts, and even to sources of gravitational waves. Several excellent reviews with different focuses were published on magnetars in the last few years: among others, Israel and DallOsso (2011); Rea and Esposito (2011); Turolla and Esposito (2013); Mereghetti et al. (2015); Turolla et al. (2015); Kaspi and Beloborodov (2017). Here, we quickly recall the history of these sources and travel through the main observational facts, trying to touch some recent and sometimes little-discussed ramifications of magnetars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا