ﻻ يوجد ملخص باللغة العربية
Spin properties of two interacting electrons in a quantum dot (QD) embedded in a nanowire with controlled aspect ratio and longitudinal magnetic fields are investigated by using a configuration interaction (CI) method and exact diagonalization (ED) techniques. The developed CI theory based on a three-dimensional (3D) parabolic model provides explicit formulations of the Coulomb matrix elements and allows for straightforward and efficient numerical implementation. Our studies reveal fruitful features of spin singlet-triplet transitions of two electrons confined in a nanowire quantum dot (NWQD), as a consequence of the competing effects of geometry-controlled kinetic energy quantization, the various Coulomb interactions, and spin Zeeman energies. The developed theory is further employed to study the spin phase diagram of two quantum-confined electrons in the regime of cross over dimensionality, from quasi-two-dimensional (disk-like) QDs to finite one-dimensional (rod-like) QDs.
Spatially nonhomogeneously spin polarized nuclei are proposed as a new mechanism to monitor electron states in a nanostructure, or as a means to createn and, if necessary, reshape such nanostructures in the course of the experiment. We found that a p
We observe a low-lying sharp spin mode of three interacting electrons in an array of nanofabricated AlGaAs/GaAs quantum dots by means of resonant inelastic light scattering. The finding is enabled by a suppression of the inhomogeneous contribution to
We have observed the Kondo effect in strongly coupled semiconducting nanowire quantum dots. The devices are made from indium arsenide nanowires, grown by molecular beam epitaxy, and contacted by titanium leads. The device transparency can be tuned by
We investigate the appearance of pi lapses in the transmission phase theta of a two-level quantum dot with Coulomb interaction U. Using the numerical and functional renormalization group methods we study the entire parameter space for spin-polarized
We show that by illuminating an InGaAs/GaAs self-assembled quantum dot with circularly polarized light, the nuclei of atoms constituting the dot can be driven into a bistable regime, in which either a threshold-like enhancement or reduction of the lo