ﻻ يوجد ملخص باللغة العربية
We present EvoL, the new release of the Padova N-body code for cosmological simulations of galaxy formation and evolution. In this paper, the basic Tree + SPH code is presented and analysed, together with an overview on the software architectures. EvoL is a flexible parallel Fortran95 code, specifically designed for simulations of cosmological structure formation on cluster, galactic and sub-galactic scales. EvoL is a fully Lagrangian self-adaptive code, based on the classical Oct-tree and on the Smoothed Particle Hydrodynamics algorithm. It includes special features such as adaptive softening lengths with correcting extra-terms, and modern formulations of SPH and artificial viscosity. It is designed to be run in parallel on multiple CPUs to optimize the performance and save computational time. We describe the code in detail, and present the results of a number of standard hydrodynamical tests.
A two-dimensional hydrodynamics code for Type Ia supernovae (SNIa) simulations is presented. The code includes a fifth-order shock-capturing scheme WENO, detailed nuclear reaction network, flame-capturing scheme and sub-grid turbulence. For post-proc
In an attempt to investigate the structures of ultra-relativistic jets injected into the intracluster medium (ICM) and the associated flow dynamics, such as shocks, velocity shear, and turbulence, we have developed a new special relativistic hydrodyn
We present a new chemodynamical code - Ramses-CH - for use in simulating the self-consistent evolution of chemical and hydrodynamical properties of galaxies within a fully cosmological framework. We build upon the adaptive mesh refinement code Ramses
We present an implementation of smoothed particle hydrodynamics (SPH) with improved accuracy for simulations of galaxies and the large-scale structure. In particular, we combine, implement, modify and test a vast majority of SPH improvement technique
Simulations of galaxy formation follow the gravitational and hydrodynamical interactions between gas, stars and dark matter through cosmic time. The huge dynamic range of such calculations severely limits strong scaling behaviour of the community cod