ﻻ يوجد ملخص باللغة العربية
In this paper, we present a numerical technique for performing Lie advection of arbitrary differential forms. Leveraging advances in high-resolution finite volume methods for scalar hyperbolic conservation laws, we first discretize the interior product (also called contraction) through integrals over Eulerian approximations of extrusions. This, along with Cartans homotopy formula and a discrete exterior derivative, can then be used to derive a discrete Lie derivative. The usefulness of this operator is demonstrated through the numerical advection of scalar fields and 1-forms on regular grids.
In this paper, we develop a structure-preserving discretization of the Lagrangian framework for electromagnetism, combining techniques from variational integrators and discrete differential forms. This leads to a general family of variational, multis
We review the list of non-degenerate invariant (super)symmetric bilinear forms (briefly: NIS) on the following simple (relatives of) Lie (super)algebras: (a) with symmetrizable Cartan matrix of any growth, (b) with non-symmetrizable Cartan matrix of
We present a super-high-efficiency approximate computing scheme for series sum and discrete Fourier transform. The summation of a series sum or a discrete Fourier transform is approximated by summing over part of the terms multiplied by corresponding
We consider the problem of the continuation with respect to a small parameter $epsilon$ of spatially localised and time periodic solutions in 1-dimensional dNLS lattices, where $epsilon$ represents the strength of the interaction among the sites on t
Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients are exhaustively described over both the complex and real fields. The exact lower and upper bounds for the dimensions of the maximal Lie invar