ترغب بنشر مسار تعليمي؟ اضغط هنا

Superfluid density of Ba(Fe$_{1-x}M_x$)$_2$As$_2$ from optical experiments

228   0   0.0 ( 0 )
 نشر من قبل Dan Wu
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The temperature dependence of the $ab$-plane optical reflectivity of Ba(Fe$_{0.92}$Co$_{0.08})_2$As$_{2}$ and Ba(Fe$_{0.95}$Ni$_{0.05})_2$As$_{2}$ single crystals is measured in a wide spectral range. Upon entering the superconducting regime, the reflectivity in both compounds increases considerably at low frequency, leading to a clear gap in the optical conductivity below 100 cm$^{-1}$. From the analysis of the complex conductivity spectra we obtain the penetration depth $lambda(T)=(3500pm 350)$ AA for Ba(Fe$_{0.92}$Co$_{0.08})_2$As$_{2}$ and $(3000pm 300)$ AA for Ba(Fe$_{0.95}$Ni$_{0.05})_2$As$_{2}$. The calculated superfluid density $rho_s$ of both compounds nicely fits the scaling relation $rho_s=(125pm 25)sigma_{dc}T_c$.



قيم البحث

اقرأ أيضاً

We report inelastic x-ray scattering measurements of the in-plane polarized transverse acoustic phonon mode propagating along $qparallel$[100] in various hole-doped compounds belonging to the 122 family of iron-based superconductors. The slope of the dispersion of this phonon mode is proportional to the square root of the shear modulus $C_{66}$ in the $q rightarrow 0$ limit and, hence, sensitive to the tetragonal-to-orthorhombic structural phase transition occurring in these compounds. In contrast to a recent report for Ba(Fe$_{0.94}$Co$_{0.06}$)$_2$As$_2$ [F. Weber et al., Phys. Rev. B 98, 014516 (2018)], we find qualitative agreement between values of $C_{66}$ deduced from our experiments and those derived from measurements of the Youngs modulus in Ba$_{1-x}$(K,Na)$_x$Fe$_2$As$_2$ at optimal doping. These results provide an upper limit of about 50 {AA} for the nematic correlation length for the optimally hole-doped compounds. Furthermore, we also studied compounds at lower doping levels exhibiting the orthorhombic magnetic phase, where $C_{66}$ is not accessible by volume probes, as well as the C4 tetragonal magnetic phase.investigated
The precise momentum dependence of the superconducting gap in the iron-arsenide superconductor with Tc = 32K (BKFA) was determined from angle-resolved photoemission spectroscopy (ARPES) via fitting the distribution of the quasiparticle density to a m odel. The model incorporates finite lifetime and experimental resolution effects, as well as accounts for peculiarities of BKFA electronic structure. We have found that the value of the superconducting gap is practically the same for the inner Gamma-barrel, X-pocket, and blade-pocket, and equals 9 meV, while the gap on the outer Gamma-barrel is estimated to be less than 4 meV, resulting in 2Delta/kT_c=6.8 for the large gap, and 2Delta/kT_c<3 for the small gap. A large (77 pm 3%) non-superconducting component in the photoemission signal is observed below T_c. Details of gap extraction from ARPES data are discussed in Appendix.
We investigate the optical conductivity as a function of temperature with light polarized along the in-plane orthorhombic $a$- and $b$-axes of Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ for $x$=0 and 2.5$%$ under uniaxial pressure. The charge dynamics at low fre quencies on these detwinned, single domain compounds tracks the anisotropic $dc$ transport properties across their structural and magnetic phase transitions. Our findings allow us to estimate the dichroism, which extends to relatively high frequencies. These results are consistent with a scenario in which orbital order plays a significant role in the tetragonal-to-orthorhombic structural transition.
Using electronic Raman spectroscopy, we report direct measurements of charge nematic fluctuations in the tetragonal phase of strain-free Ba(Fe$_{1-x}$Co$_{x})_{2}$As$_{2}$ single crystals. The strong enhancement of the Raman response at low temperatu res unveils an underlying charge nematic state that extends to superconducting compositions and which has hitherto remained unnoticed. Comparison between the extracted charge nematic susceptibility and the elastic modulus allows us to disentangle the charge contribution to the nematic instability, and to show that charge nematic fluctuations are weakly coupled to the lattice.
Combined neutron and x-ray diffraction experiments demonstrate the formation of a low-temperature minority tetragonal phase in Ba$_{0.76}$K$_{0.24}$Fe$_2$As$_2$ in addition to the majority magnetic, orthorhombic phase. A coincident enhancement in the magnetic ($frac{1}{2}$ $frac{1}{2}$ 1) peaks shows that this minority phase is of the same type that was observed in Ba$_{1-x}$Na$_x$Fe$_2$As$_2$ ($0.24 leq x leq 0.28$), in which the magnetic moments reorient along the $c$-axis. This is evidence that the tetragonal magnetic phase is a universal feature of the hole-doped iron-based superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا