ﻻ يوجد ملخص باللغة العربية
We demonstrate a technique to tune the optical properties of micropillar cavities by creating small defects on the sample surface near the cavity region with an intense focused laser beam. Such defects modify strain in the structure, changing the birefringence in a controllable way. We apply the technique to make the fundamental cavity mode polarization-degenerate and to fine tune the overall mode frequencies, as needed for applications in quantum information science.
We report on the experimental observation of induced solitons in a passively mode-locked fiber ring laser with birefringence cavity. Due to the cross coupling between the two orthogonal polarization components of the laser, it was found that if a sol
We present a novel method of machining optical fiber surfaces with a CO${}_2$ laser for use in Fiber-based Fabry-Perot Cavities (FFPCs). Previously FFPCs were prone to large birefringence and limited to relatively short cavity lengths ($le$ 200 $mu$m
The role of coherent population oscillations is evidenced in the noise spectrum of an ultra-low noise lasers. This effect is isolated in the intensity noise spectrum of an optimized single-frequency vertical external cavity surface emitting laser. Th
Optical high-finesse cavities are a well-known mean to enhance light-matter interactions. Despite large progress in the realization of strongly coupled light-matter systems, the controlled positioning of single solid emitters in cavity modes remains
This paper reports the results of a study into highly efficient sum frequency generation from 792 and 1556 nm wavelength light to 525 nm wavelength light using either a single or double resonant ring cavity based on a periodically poled potassium tit