ﻻ يوجد ملخص باللغة العربية
Globular star clusters are compact and massive stellar systems old enough to have witnessed the entire history of our Galaxy, the Milky Way. Although recent results suggest that their formation may have been more complex than previously thought, they still are the best approximation to a stellar population formed over a relatively short time scale (less than 1 Gyr) and with virtually no dispersion in the iron content. Indeed, only one cluster-like system (omega Centauri) in the Galactic halo is known to have multiple stellar populations with a significant spread in iron abundance and age4,5. Similar findings in the Galactic bulge have been hampered by the obscuration arising from thick and varying layers of interstellar dust. Here we report that Terzan 5, a globular-cluster-like system in the Galactic bulge, has two stellar populations with different iron content and ages. Terzan 5 could be the surviving remnant of one of the primordial building blocks that are thought to merge and form galaxy bulges.
Terzan 5 is a stellar system in the Galactic bulge commonly catalogued as a globular cluster. Through dedicated NIR photometry and spectroscopy we have discovered that it harbors two main stellar populations defining two distinct red clumps (RCs) in
Terzan 5 is a Galactic globular cluster exhibiting prominent X-ray and gamma-ray emission. Following the discovery of extended X- ray emission in this object, we explore here archival data at several wavelengths for other unexpected emission features
Context. Moderately metal-poor inner bulge globular clusters are relics of a generation of long-lived stars that formed in the early Galaxy. Terzan 9, projected at 4d 12 from the Galactic center, is among the most central globular clusters in the Mil
The possibility of the $^{14}$C cluster being a basic building block of medium mass nuclei is discussed. Although $alpha$ cluster structures have been widely discussed in the light $Napprox Z$ mass region, the neutron to proton ratio deviates from un
We report and study the outburst of a new transient X-ray binary (XRB) in Terzan 5, the third detected in this globular cluster, Swift J174805.3-244637 or Terzan 5 X-3. We find clear spectral hardening in Swift/XRT data during the outburst rise to th