ترغب بنشر مسار تعليمي؟ اضغط هنا

Normal subgroups of diffeomorphism and homeomorphism groups of R^n and other open manifolds

174   0   0.0 ( 0 )
 نشر من قبل Paul Schweitzer SJ
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We determine all the normal subgroups of the group of C^r diffeomorphisms of R^n, r = 1,2,...,infinity, except when r=n+1 or n=4, and also of the group of homeomorphisms of R^n (r=0). We also study the group A_0 of diffeomorphisms of an open manifold M that are isotopic to the identity. If M is the interior of a compact manifold with nonempty boundary, then the quotient of A_0 by the normal subgroup of diffeomorphisms that coincide with the identity near to a given end e of M is simple.



قيم البحث

اقرأ أيضاً

For a non-compact n-manifold M let H(M) denote the group of homeomorphisms of M endowed with the Whitney topology and H_c(M) the subgroup of H(M) consisting of homeomorphisms with compact support. It is shown that the group H_c(M) is locally contract ible and the identity component H_0(M) of H(M) is an open normal subgroup in H_c(M). This induces the topological factorization H_c(M) approx H_0(M) times M_c(M) for the mapping class group M_c(M) = H_c(M)/H_0(M) with the discrete topology. Furthermore, for any non-compact surface M, the pair (H(M), H_c(M)) is locally homeomorphic to (square^w l_2,cbox^w l_2) at the identity id_M of M. Thus the group H_c(M) is an (l_2 times R^infty)-manifold. We also study topological properties of the group D(M) of diffeomorphisms of a non-compact smooth n-manifold M endowed with the Whitney C^infty-topology and the subgroup D_c(M) of D(M) consisting of all diffeomorphisms with compact support. It is shown that the pair (D(M),D_c(M)) is locally homeomorphic to (square^w l_2, cbox^w l_2) at the identity id_M of M. Hence the group D_c(M) is a topological (l_2 times R^infty)-manifold for any dimension n.
328 - Benoit Kloeckner 2008
The Chabauty space of a topological group is the set of its closed subgroups, endowed with a natural topology. As soon as $n>2$, the Chabauty space of $R^n$ has a rather intricate topology and is not a manifold. By an investigation of its local struc ture, we fit it into a wider, but too wild, class of topological spaces (namely Goresky-MacPherson stratified spaces). Thanks to a localization theorem, this local study also leads to the main result of this article: the Chabauty space of $R^n$ is simply connected for all $n$. Last, we give an alternative proof of the Hubbard-Pourezza Theorem, which describes the Chabauty space of $R^2$.
136 - Arielle Leitner 2015
This paper uses work of Haettel to classify all subgroups of PGL(4,R) isomorphic to (R^3 , +), up to conjugacy. We use this to show there are 4 families of generalized cusps up to projective equivalence in dimension 3.
We complete the proof of the Generalized Smale Conjecture, apart from the case of $RP^3$, and give a new proof of Gabais theorem for hyperbolic 3-manifolds. We use an approach based on Ricci flow through singularities, which applies uniformly to sphe rical space forms other than $S^3$ and $RP^3$ and hyperbolic manifolds, to prove that the moduli space of metrics of constant sectional curvature is contractible. As a corollary, for such a 3-manifold $X$, the inclusion $text{Isom} (X,g)to text{Diff}(X)$ is a homotopy equivalence for any Riemannian metric $g$ of constant sectional curvature.
318 - Andrew Putman 2021
A beautifully simple free generating set for the commutator subgroup of a free group was constructed by Tomaszewski. We give a new geometric proof of his theorem, and show how to give a similar free generating set for the commutator subgroup of a sur face group. We also give a simple representation-theoretic description of the structure of the abelianizations of these commutator subgroups and calculate their homology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا