ترغب بنشر مسار تعليمي؟ اضغط هنا

Harmonic metrics on unipotent bundles over quasi-compact Kaehler manifolds

167   0   0.0 ( 0 )
 نشر من قبل Yi-Hu Yang
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this note, we propose an approach to the study of the analogue for unipotent harmonic bundles of Schmids Nilpotent Orbit Theorem. Using this approach, we construct harmonic metrics on unipotent bundles over quasi-compact Kahler manifolds with carefully controlled asymptotics near the compactifying divisor; such a metric is unique up to some isometry. Such an asymptotic behavior is canonical in some sense.



قيم البحث

اقرأ أيضاً

176 - Juergen Jost , Yi-Hu Yang , 2008
In this note, we survey our recent work concerning cohomologies of harmonic bundles on quasi-compact Kaehler manifolds.
92 - Di Wu , Xi Zhang 2021
In this paper, we study the existence of Poisson metrics on flat vector bundles over noncompact Riemannian manifolds and discuss related consequence, specially on the applications in Higgs bundles, towards generalizing Corlette-Donaldson-Hitchin-Simp sons nonabelian Hodge correspondence to noncompact K{a}hler manifolds setting.
Let $S$ be a Riemann surface obtained by deleting a finite number of points, called cusps, from a compact Riemann surface. Let $rho: pi_1(S)to Sl(n, mathbb{C})$ be a semisimple linear representation of $pi_1(S)$ which is unipotent near the cusps. We investigate various cohomologies associated to $rho$ of $bar S$ with degenerating coefficients $L_{rho}$ (considered as a local system -- a flat vector bundle, a Higgs bundle, or a $mathcal{D}$-module, depending on the context): the v{C}ech cohomology of $j_*L_{rho}$, the $L^2$-cohomology, the $L^2$-Dolbeault cohomology, and the $L^2$-Higgs cohomology, and the relationships between them. This paper is meant to be a part of the general program of studying cohomologies with degenerating coefficients on quasiprojective varieties and their Kahlerian generalizations. The general aim here is not restricted to the case of curves nor to the one of representations that are unipotent near the divisor. The purpose of this note therefore is to illuminate at this particular case where many of the (analytic and geometric) difficulties of the general case are not present what differences will appear when we consider unipotent harmonic bundles instead of Variations of Hodge Structures where the results are known.
We consider a class of compact homogeneous CR manifolds, that we call $mathfrak n$-reductive, which includes the orbits of minimal dimension of a compact Lie group $K_0$ in an algebraic homogeneous variety of its complexification $K$. For these manif olds we define canonical equivariant fibrations onto complex flag manifolds. The simplest example is the Hopf fibration $S^3tomathbb{CP}^1$. In general these fibrations are not $CR$ submersions, however they satisfy a weaker condition that we introduce here, namely they are CR-deployments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا