ترغب بنشر مسار تعليمي؟ اضغط هنا

Dileptonic signatures of T-odd quarks at the LHC

151   0   0.0 ( 0 )
 نشر من قبل Giacomo Cacciapaglia
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف G.Cacciapaglia




اسأل ChatGPT حول البحث

Little Higgs models are often endowed with a T-parity in order to satisfy electroweak precision tests and give at the same time a stable particle which is a candidate for cold dark matter. This type of models predicts a set of new T-odd fermions in addition to the heavy gauge bosons of the Little Higgs models, which may show interesting signatures at colliders. In this paper, we study the signatures of strong and electroweak pair production of the first two generations of T-odd quarks at the LHC. We focus on the dileptonic signatures (p p to l l j j MET) with (a) opposite-sign dileptons and (b) same-sign dileptons.



قيم البحث

اقرأ أيضاً

123 - G.Cacciapaglia 2009
Little Higgs models with T-parity can easily satisfy electroweak precision tests and at the same time give a stable particle which is a candidate for cold dark matter. In addition to little Higgs heavy gauge bosons, this type of models predicts a set of new T-odd fermions, which may show quite interesting signatures at colliders. We study purely leptonic signatures of T-odd leptons at the Large Hadron Collider (LHC).
This work provides an overview on the current status of phenomenology and searches for heavy vector-like quarks, which are predicted in many models of new physics beyond the Standard Model. Searches at Tevatron and at the LHC, here listed and shortly described, have not found any evidence for new heavy fermionic states (either chiral or vector-like), and have therefore posed strong bounds on their masses: depending on specific assumptions on the interactions and on the observed final state, vector-like quarks with masses up to roughly 400-600 GeV have been excluded by all experiments. In order to be as simple and model-independent as possible, the chosen framework for the phenomenological analysis is an effective model with the addition of a vector-like quark representation (singlet, doublet or triplet under SU(2)) which couples through Yukawa interactions with all SM families. The relevance of different observables for the determination of bounds on mixing parameters is then discussed and a complete overview of possible two-body final states for every vector-like quark is provided, including their subsequent decay into SM particles. A list and short description of phenomenological analyses present in literature is also provided for reference purposes.
We consider the production at the LHC of exotic composite quarks of charge $Q=+(5/3) e$ and $Q=-(4/3) e$. Such states are predicted in composite models of higher isospin multiplets ($I_W=1$ or $I_W=3/2$). Given their exotic charges (such as $5/3$), t heir decays proceed through the electroweak interactions. We compute decay widths and rates for resonant production of the exotic quarks at the LHC. Partly motivated by the recent observation of an excess by the CMS collaboration in the $e ot p_T jj$ final state signature we focus on $ pp to U^+ j to W^+ + j, j, to ell^+ ot p_T jj$ and then perform a fast simulation of the detector reconstruction based on DELPHES. We then scan the parameter space of the model ($m_*=Lambda$) and study the statistical significance of the signal against the relevant standard model background ($Wjj$ followed by leptonic decay of the $W$ gauge boson) providing the luminosity curves as function of $m_*$ for discovery at 3- and 5-$sigma$ level.
We study the single production of the fourth family quarks through the process pp--> QjX at the Large Hadron Collider (LHC). We have calculated the decay widths and branching ratios of the fourth family quarks (b and t) in the mass range 300-800 GeV. The cross sections of signal and background processes have been calculated in a Monte Carlo framework. It is shown that the LHC can discover single t and b quarks if the CKM matrix elements |V_{tq}|,|V_{qb}|>=0.01.
141 - Karol Krizka , Abhishek Kumar , 2012
A very light scalar top (stop) superpartner is motivated by naturalness and electroweak baryogenesis. When the mass of the stop is less than the sum of the masses of the top quark and the lightest neutralino superpartner, as well as the of the masses of the lightest chargino and the bottom quark, the dominant decay channels of the stop will be three-body, four-body, or flavour violating. In this work, we investigate the direct and indirect constraints on a light stop, we compute the relative decay branching fractions to these channels, and we study the sensitivity of existing LHC searches to each of them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا