On some rescaled shape optimization problems


الملخص بالإنكليزية

We consider Cheeger-like shape optimization problems of the form $$minbig{|Omega|^alpha J(Omega) : Omegasubset Dbig}$$ where $D$ is a given bounded domain and $alpha$ is above the natural scaling. We show the existence of a solution and analyze as $J(Omega)$ the particular cases of the compliance functional $C(Omega)$ and of the first eigenvalue $lambda_1(Omega)$ of the Dirichlet Laplacian. We prove that optimal sets are open and we obtain some necessary conditions of optimality.

تحميل البحث