ﻻ يوجد ملخص باللغة العربية
We propose a sequential optimizing betting strategy in the multi-dimensional bounded forecasting game in the framework of game-theoretic probability of Shafer and Vovk (2001). By studying the asymptotic behavior of its capital process, we prove a generalization of the strong law of large numbers, where the convergence rate of the sample mean vector depends on the growth rate of the quadratic variation process. The growth rate of the quadratic variation process may be slower than the number of rounds or may even be zero. We also introduce an information criterion for selecting efficient betting items. These results are then applied to multiple asset trading strategies in discrete-time and continuous-time games. In the case of continuous-time game we present a measure of the jaggedness of a vector-valued continuous process. Our results are examined by several numerical examples.
We propose a betting strategy based on Bayesian logistic regression modeling for the probability forecasting game in the framework of game-theoretic probability by Shafer and Vovk (2001). We prove some results concerning the strong law of large numbe
Many autonomous systems forecast aspects of the future in order to aid decision-making. For example, self-driving vehicles and robotic manipulation systems often forecast future object poses by first detecting and tracking objects. However, this dete
Games with large branching factors pose a significant challenge for game tree search algorithms. In this paper, we address this problem with a sampling strategy for Monte Carlo Tree Search (MCTS) algorithms called {em na{i}ve sampling}, based on a va
When normal and mis`{e}re games are played on bi-type binary Galton-Watson trees (with vertices coloured blue or red and each having either no child or precisely $2$ children), with one player allowed to move along monochromatic edges and the other a
Many real-world applications involve teams of agents that have to coordinate their actions to reach a common goal against potential adversaries. This paper focuses on zero-sum games where a team of players faces an opponent, as is the case, for examp