ترغب بنشر مسار تعليمي؟ اضغط هنا

A High-Pressure Polarized $^3$He Gas Target for Nuclear Physics Experiments Using A Polarized Photon Beam

105   0   0.0 ( 0 )
 نشر من قبل Qiang Ye
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Following the first experiment on three-body photodisintegration of polarized $^3$He utilizing circularly polarized photons from High Intensity Gamma Source (HI$gamma$S) at Duke Free Electron Laser Laboratory (DFELL), a new high-pressure polarized $^3$He target cell made of pyrex glass coated with a thin layer of sol-gel doped with aluminum nitrate nonahydrate has been built in order to reduce the photon beam induced background. The target is based on the technique of spin-exchange optical pumping of hybrid rubidium and potassium and the highest polarization achieved is $sim$62% determined from both NMR-AFP and EPR polarimetry. The $X$ parameter is estimated to be $sim0.06$ and the performance of the target is in good agreement with theoretical predictions. We also present beam test results from this new target cell and the comparison with the GE180 $^3$He target cell used previously at HI$gamma$S. This is the first time that sol-gel coating technique has been used in a polarized $^3$He target for nuclear physics experiments.



قيم البحث

اقرأ أيضاً

We have observed depolarization effects when high intensity cold neutron beams are incident on alkali-metal-spin-exchange polarized He-3 cells used as neutron spin filters. This was first observed as a reduction of the maximum attainable He-3 polariz ation and was attributed to a decrease of alkali-metal polarization, which led us to directly measure alkali-metal polarization and spin relaxation over a range of neutron fluxes at LANSCE and ILL. The data reveal a new alkali-metal spin-relaxation mechanism that approximately scales as the square root of the neutron capture-flux density incident on the cell. This is consistent with an effect proportional to the recombination-limited ion concentration, but is much larger than expected from earlier work.
139 - W. Zheng , H. Gao , B. Lalremruata 2012
We propose a new method to detect short-range textit{P-} and textit{T-} violating interactions between nucleons, based on measuring the precession frequency shift of polarized $^3$He nuclei in the presence of an unpolarized mass. To maximize the sens itivity, a high-pressure $^3$He cell with thin glass windows (250 $rmmu m$) is used to minimize the distance between the mass and $^3$He. The magnetic field fluctuation is suppressed by using the $^3$He gas in a different region of the cell as a magnetometer. Systematic uncertainties from the magnetic properties of the mass are suppressed by flipping both the magnetic field and spin directions. Without any magnetic shielding, our result has already reached the sensitivity of the current best limit. With improvement in uniformity and stability of the field, we can further improve the sensitivity by two orders of magnitude over the force range from $10^{-4}-10^{-2}$ m.
143 - K. Allada , Y.X. Zhao , K. Aniol 2013
We report the first measurement of target single-spin asymmetries (A$_N$) in the inclusive hadron production reaction, $e~$+$~^3text{He}^{uparrow}rightarrow h+X$, using a transversely polarized $^3$He target. The experiment was conducted at Jefferson Lab in Hall A using a 5.9-GeV electron beam. Three types of hadrons ($pi^{pm}$, $text{K}^{pm}$ and proton) were detected in the transverse hadron momentum range 0.54 $<p_T<$ 0.74 GeV/c. The range of $x_F$ for pions was -0.29 $<x_F<$ -0.23 and for kaons -0.25 $<x_F<$-0.18. The observed asymmetry strongly depends on the type of hadron. A positive asymmetry is observed for $pi^+$ and $text{K}^+$. A negative asymmetry is observed for $pi^{-}$. The magnitudes of the asymmetries follow $|A^{pi^-}| < |A^{pi^+}| < |A^{K^+}|$. The K$^{-}$ and proton asymmetries are consistent with zero within the experimental uncertainties. The $pi^{+}$ and $pi^{-}$ asymmetries measured for the $^3$He target and extracted for neutrons are opposite in sign with a small increase observed as a function of $p_T$.
192 - J. Huang , K. Allada , C. Dutta 2011
We report the first measurement of the double-spin asymmetry $A_{LT}$ for charged pion electroproduction in semi obreakdash-inclusive deep obreakdash-inelastic electron scattering on a transversely polarized $^{3}$He target. The kinematics focused on the valence quark region, $0.16<x<0.35$ with $1.4<Q^{2}<2.7,textrm{GeV}^{2}$. The corresponding neutron $A_{LT}$ asymmetries were extracted from the measured $^{3}$He asymmetries and proton over $^{3}$He cross section ratios using the effective polarization approximation. These new data probe the transverse momentum dependent parton distribution function $g_{1T}^{q}$ and therefore provide access to quark spin-orbit correlations. Our results indicate a positive azimuthal asymmetry for $pi^{-}$ production on $^{3}$He and the neutron, while our $pi^{+}$ asymmetries are consistent with zero.
We present the conceptual design of a polarized $^3$He target to be used for high luminosity scattering experiments within high magnetic field environments. This two-cell target will take advantage of advancements in optical pumping techniques at hig h magnetic field to create 60% longitudinally polarized $^3$He gas in a pumping cell within a uniform magnetic field above 1 T. By transferring the polarized gas to cryogenic target cell, the gas density is increased to create a target thickness suitable for high luminosity applications. We discuss the general design of this scheme, and plans for its application in Jefferson Labs CLAS12 detector.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا