ترغب بنشر مسار تعليمي؟ اضغط هنا

A Star in the M31 Giant Stream: the Highest Negative Stellar Velocity Known

82   0   0.0 ( 0 )
 نشر من قبل Nelson Caldwell
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N. Caldwell




اسأل ChatGPT حول البحث

We report on a single star, B030D, observed as part of a large survey of objects in M31, which has the unusual radial velocity of -780 km/s. Based on details of its spectrum, we find that the star is an F supergiant, with a circumstellar shell. The evolutionary status of the star could be one of a post-mainsequence close binary, a symbiotic nova, or less likely, a post-AGB star, which additional observations could help sort out. Membership of the star in the Andromeda Giant Stream can explain its highly negative velocity.



قيم البحث

اقرأ أيضاً

We analyze existing measurements of [Fe/H] and [$alpha$/Fe] for individual red giant branch (RGB) stars in the Giant Stellar Stream (GSS) of M31 to determine whether spatial abundance gradients are present. These measurements were obtained from low- ($R sim 3000$) and moderate- ($R sim 6000$) resolution Keck/DEIMOS spectroscopy using spectral synthesis techniques as part of the Elemental Abundances in M31 survey. From a sample of 62 RGB stars spanning the GSS at 17, 22, and 33 projected kpc, we measure a [Fe/H] gradient of $-$0.018 $pm$ 0.003 dex kpc$^{-1}$ and negligible [$alpha$/Fe] gradient with M31-centric radius. We investigate GSS abundance patterns in the outer halo using additional [Fe/H] and [$alpha$/Fe] measurements for 6 RGB stars located along the stream at 45 and 58 projected kpc. These abundances provide tentative evidence that the trends in [Fe/H] and [$alpha$/Fe] beyond 40 kpc in the GSS are consistent with those within 33 kpc. We also compare the GSS abundances to 65 RGB stars located along the possibly related Southeast (SE) shelf substructure at 12 and 18 projected kpc. The abundances of the GSS and SE shelf are consistent, supporting a common origin hypothesis, although this interpretation may be complicated by the presence of [Fe/H] gradients in the GSS. We discuss the abundance patterns in the context of photometric studies from the literature and explore implications for the properties of the GSS progenitor, suggesting that the high $langle$[$alpha$/Fe]$rangle$ of the GSS (+0.40 $pm$ 0.05 dex) favors a major merger scenario for its formation.
We examine the nature of the progenitor of the giant stellar stream in M31 using as constraints new radial velocity measurements of stream red giant stars (presented in the companion paper by Guhathakurta et al. 2005, astro-ph/0406145) along with oth er M31 data sets available in the literature. We find that the observations are best fit by orbits that are highly eccentric and close to edge-on, with apo- to peri-center ratios of order 25 - 30, and with apocenters at or only slightly beyond the southern edge of the current data. Among these orbits, we are able to find a few that plausibly connect the stream with the northern spur or with the low-surface-brightness feature of similar high metallicity as the stream (originally reported by Ferguson et al. 2002) to the east of M31s center. In the latter case, if the connection is real, then the eastern debris should lie well in front of M31 near the apocenter of the orbit. Both the width of the debris and velocity dispersion measurements imply a rough lower limit on the mass of the progenitor of 10^8 M_sun. We use this limit and our orbits to discuss which of M31s satellites could be plausibly associated with the stream. In addition, we predict that the width of the stream should increase beyond the southern edge of the current data around the apocenter of the orbit and that the line-of-sight velocity dispersion should exhibit significant variations along the stream.
The Phoenix stellar stream has a low intrinsic dispersion in velocity and metallicity that implies the progenitor was probably a low mass globular cluster. In this work we use Magellan/MIKE high-dispersion spectroscopy of eight Phoenix stream red gia nts to confirm this scenario. In particular, we find negligible intrinsic scatter in metallicity ($sigma(mathrm{[Fe~II/H]}) = 0.04^{+0.11}_{-0.03}$) and a large peak-to-peak range in [Na/Fe] and [Al/Fe] abundance ratios, consistent with the light element abundance patterns seen in the most metal-poor globular clusters. However, unlike any other globular cluster, we also find an intrinsic spread in [Sr II/Fe] spanning $sim$1 dex, while [Ba II/Fe] shows nearly no intrinsic spread ($sigma(mathrm{[Ba~II/H]}) = {0.03}^{+0.10}_{-0.02}$). This abundance signature is best interpreted as slow neutron capture element production from a massive fast-rotating metal-poor star ($15-20 mathrm{M}_odot$, $v_mathrm{ini}/v_mathrm{crit} = 0.4$, $[mathrm{Fe/H}] = -3.8$). The low inferred cluster mass suggests the system would have been unable to retain supernovae ejecta, implying that any massive fast-rotating metal-poor star that enriched the interstellar medium must have formed and evolved before the globular cluster formed. Neutron capture element production from asymptotic giant branch stars or magneto-rotational instabilities in core-collapse supernovae provide poor fits to the observations. We also report one Phoenix stream star to be a lithium-rich giant ($A(mathrm{Li}) = 3.1 pm 0.1$). At $[mathrm{Fe/H}] = -2.93$ it is among the most metal-poor lithium-rich giants known.
We present the first measurements of [Fe/H] and [$alpha$/Fe] abundances, obtained using spectral synthesis modeling, for red giant branch stars in M31s giant stellar stream. The spectroscopic observations, obtained at a projected distance of 17 kpc f rom M31s center, yielded 61 stars with [Fe/H] measurements, including 21 stars with [$alpha$/Fe] measurements, from 112 targets identified as M31 stars. The [Fe/H] measurements confirm the expectation from photometric metallicity estimates that stars in this region of M31s halo are relatively metal-rich compared to stars in the MWs inner halo: more than half the stars in the field, including those not associated with kinematically identified substructure, have [Fe/H] abundances $> -1.0$. The stars in this field are $alpha$-enhanced at lower metallicities, while [$alpha$/Fe] decreases with increasing [Fe/H] above metallicities of [Fe/H] $gtrsim -0.9$. Three kinematical components have been previously identified in this field: the giant stellar stream, a second kinematically cold feature of unknown origin, and M31s kinematically hot halo. We compare probabilistic [Fe/H] and [$alpha$/Fe] distribution functions for each of the components. The giant stellar stream and the second kinematically cold feature have very similar abundance distributions, while the halo component is more metal-poor. Although the current sample sizes are small, a comparison of the abundances of stars in the giant stellar stream field with abundances of M31 halo and dSph stars from the literature indicate that the progenitor of the stream was likely more massive, and experienced a higher efficiency of star formation, than M31s existing dSphs or the dEs NGC147 and NGC185.
We present results from a large spectroscopic survey of M31 red giants using the Keck telescope/DEIMOS. Photometric pre-screening, based on the 100A-wide DDO51 band centered on the Mgb/MgH feature, was used to select spectroscopic targets. Red giant candidates were targeted in a small field on M31s giant southern tidal stream at a projected distance of 31kpc from the galaxy center. We isolate a clean sample of 68 giants by removing contaminants (foreground Galactic dwarfs and background galaxies) using spectroscopic, imaging, and photometric methods. About 65% of the M31 stars are found to be members of the stream, while the rest appear to be members of the general halo population. The mean (heliocentric) radial velocity of the stream in our field is -458 km/s, or -158 km/s relative to M31s systemic velocity, in good agreement with recent measurements at other stream locations. The intrinsic velocity dispersion of the stream is constrained to be 15_{-15}^{+8} km/s (90% confidence limits). The companion paper by Font et al. (2004, astro-ph/0406146) discusses possible orbits, implications of the coldness of the stream, and progenitor satellite properties. The kinematics (and perhaps [Fe/H] distribution) of our halo sample indicate that it is different from other M31 halo samples; this may be an indication of substructure in the halo. The stream seems to have a higher mean [Fe/H] than the halo, -0.51 vs -0.74 dex, and a smaller [Fe/H] spread. The streams high metallicity implies that its progenitor must have been a luminous dwarf galaxy. The CaII triplet strengths of the M31 giants are generally consistent with photometric estimates of their metallicity (derived by fitting RGB fiducials in the color-magnitude diagram). There is indirect evidence of intermediate-age stars in the stream.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا