ﻻ يوجد ملخص باللغة العربية
We report on the observation of an elementary exchange process in an optically trapped ultracold sample of atoms and Feshbach molecules. We can magnetically control the energetic nature of the process and tune it from endoergic to exoergic, enabling the observation of a pronounced threshold behavior. In contrast to relaxation to more deeply bound molecular states, the exchange process does not lead to trap loss. We find excellent agreement between our experimental observations and calculations based on the solutions of three-body Schrodinger equation in the adiabatic hyperspherical representation. The high efficiency of the exchange process is explained by the halo character of both the initial and final molecular states.
We discuss our recent observation of an atom-dimer Efimov resonance in an ultracold mixture of Cs atoms and Cs_2 Feshbach molecules [Nature Phys. 5, 227 (2009)]. We review our experimental procedure and present additional data involving a non-univers
Chemical reactions at ultracold temperature provide an ideal platform to study chemical reactivity at the fundamental level, and to understand how chemical reactions are governed by quantum mechanics. Recent years have witnessed the remarkable progre
We investigate experimentally the entropy transfer between two distinguishable atomic quantum gases at ultralow temperatures. Exploiting a species-selective trapping potential, we are able to control the entropy of one target gas in presence of a sec
We investigate universal behavior in elastic atom-dimer scattering below the dimer breakup threshold calculating the atom-dimer effective-range function $akcotdelta$. Using the He-He system as a reference, we solve the Schrodinger equation for a fami
We report on the design, fabrication and characterization of magnetic nanostructures to create a lattice of magnetic traps with sub--micron period for trapping ultracold atoms. These magnetic nanostructures were fabricated by patterning a Co/Pd multi