ﻻ يوجد ملخص باللغة العربية
Many young extra-galactic clusters have a measured velocity dispersion that is too high for the mass derived from their age and total luminosity, which has led to the suggestion that they are not in virial equilibrium. Most of these clusters are confined to a narrow age range centred around 10 Myr because of observational constraints. At this age the cluster light is dominated by luminous evolved stars, such as red supergiants, with initial masses of ~13-22 Msun for which (primordial) binarity is high. In this study we investigate to what extent the observed excess velocity dispersion is the result of the orbital motions of binaries. We demonstrate that estimates for the dynamical mass of young star clusters, derived from the observed velocity dispersion, exceed the photometric mass by up-to a factor of 10 and are consistent with a constant offset in the square of the velocity dispersion. This can be reproduced by models of virialised star clusters hosting a massive star population of which ~25 is in binaries, with typical mass ratios of ~0.6 and periods of ~1000 days. We conclude that binaries play a pivotal role in deriving the dynamical masses of young (~10 Myr) moderately massive and compact (<1e5 Msun; > 1 pc) star clusters.
The majority of massive stars ($>8$ $rm{M_{odot}}$) in OB associations are found in close binary systems. Nonetheless, the formation mechanism of these close massive binaries is not understood yet. Using literature data, we measured the radial-veloci
Based on our recent work on tidal tails of star clusters (Kuepper et al. 2009) we investigate star clusters of a few 10^4 Msun by means of velocity dispersion profiles and surface density profiles. We use a comprehensive set of $N$-body computations
We study the compact binary population in star clusters, focusing on binaries containing black holes, using a self-consistent Monte Carlo treatment of dynamics and full stellar evolution. We find that the black holes experience strong mass segregatio
The early evolution of a dense young star cluster (YSC) depends on the intricate connection between stellar evolution and dynamical processes. Thus, N-body simulations of YSCs must account for both aspects. We discuss N-body simulations of YSCs with
We have carried out a search for massive white dwarfs (WDs) in the direction of young open star clusters using the Gaia DR2 database. The aim of this survey was to provide robust data for new and previously known high-mass WDs regarding cluster membe