ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical architectures of planetary systems induced by orbital migration

163   0   0.0 ( 0 )
 نشر من قبل Ewa Szuszkiewicz
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The aim of this talk is to present the most recent advances in establishing plausible planetary system architectures determined by the gravitational tidal interactions between the planets and the disc in which they are embedded during the early epoch of planetary system formation. We concentrate on a very well defined and intensively studied process of the disc-planet interaction leading to the planet migration. We focus on the dynamics of the systems in which low-mass planets are present. Particular attention is devoted to investigation of the role of resonant configurations. Our studies, apart from being complementary to the fast progress occurring just now in observing the whole variety of planetary systems and uncovering their structure and origin, can also constitute a valuable contribution in support of the missions planned to enhance the number of detected multiple systems.



قيم البحث

اقرأ أيضاً

Planets close to their stars are thought to form farther out and migrate inward due to angular momentum exchange with gaseous protoplanetary disks. This process can produce systems of planets in co-orbital (Trojan or 1:1) resonance, in which two plan ets share the same orbit, usually separated by 60 degrees. Co-orbital systems are detectable among the planetary systems found by the Kepler mission either directly or by transit timing variations. However, no co-orbital systems have been found within the thousands of Kepler planets and candidates. Here we study the orbital evolution of co-orbital planets embedded in a protoplanetary disk using a grid-based hydrodynamics code. We show that pairs of similar-mass planets in co-orbital resonance are disrupted during large-scale orbital migration. Destabilization occurs when one or both planets is near the critical mass needed to open a gap in the gaseous disk. A confined gap is opened that spans the 60 degree azimuthal separation between planets. This alters the torques imparted by the disk on each planet -- pushing the leading planet outward and the trailing planet inward -- and disrupts the resonance. The mechanism applies to systems in which the two planets masses differ by a factor of two or less. In a simple flared disk model the critical mass for gap opening varies from a few Earth masses at the inner edge of the disk to 1 Saturn-mass at 5 AU. A pair of co-orbital planets with masses in this range that migrates will enter a region where the planets are at the gap-opening limit. At that point the resonance is disrupted. We therefore predict an absence of planets on co-orbital configurations with masses in the super-Earth to Saturn mass range with similar masses.
Planet formation is generally described in terms of a system containing the host star and a protoplanetary disc, of which the internal properties (e.g. mass and metallicity) determine the properties of the resulting planetary system. However, (proto) planetary systems are predicted and observed to be affected by the spatially-clustered stellar formation environment, either through dynamical star-star interactions or external photoevaporation by nearby massive stars. It is challenging to quantify how the architecture of planetary systems is affected by these environmental processes, because stellar groups spatially disperse within <1 billion years, well below the ages of most known exoplanets. Here we identify old, co-moving stellar groups around exoplanet host stars in the astrometric data from the Gaia satellite and demonstrate that the architecture of planetary systems exhibits a strong dependence on local stellar clustering in position-velocity phase space, implying a dependence on their formation or evolution environment. After controlling for host stellar age, mass, metallicity, and distance from the Sun, we obtain highly significant differences (with $p$-values of $10^{-5}{-}10^{-2}$) in planetary (system) properties between phase space overdensities and the field. The median semi-major axis and orbital period of planets in overdensities are 0.087 au and 9.6 days, respectively, compared to 0.81 au and 154 days for planets around field stars. Hot Jupiters (massive, close-in planets) predominantly exist in stellar phase space overdensities, strongly suggesting that their extreme orbits originate from environmental perturbations rather than internal migration or planet-planet scattering. Our findings reveal that stellar clustering is a key factor setting the architectures of planetary systems.
Short period planets are subject to intense energetic irradiations from their stars. It has been shown that this can lead to significant atmospheric mass-loss and create smaller mass planets. Here, we analyse whether the evaporation mechanism can aff ect the orbit of planets. The orbital evolution of a planet undergoing evaporation is derived analytically in a very general way. Analytical results are then compared with the period distribution of two classes of inner exoplanets: Jupiter-mass planets and Neptune-mass planets. These two populations have a very distinct period distribution, with a probability lower than 10^-4 that they were derived from the same parent distribution. We show that mass ejection can generate significant migration with an increase of orbital period that matches very well the difference of distribution of the two populations. This would happen if the evaporation emanates from above the hottest region of planet surface. Thus, migration induced by evaporation is an important mechanism that cannot be neglected.
108 - A. Crida , C. Baruteau , W. Kley 2009
Numerical simulations of planets embedded in protoplanetary gaseous discs are a precious tool for studying the planetary migration ; however, some approximations have to be made. Most often, the selfgravity of the gas is neglected. In that case, it i s not clear in the literature how the material inside the Roche lobe of the planet should be taken into account. Here, we want to address this issue by studying the influence of various methods so far used by different authors on the migration rate. We performed high-resolution numerical simulations of giant planets embedded in discs. We compared the migration rates with and without gas selfgravity, testing various ways of taking the circum-planetary disc (CPD) into account. Different methods lead to significantly different migration rates. Adding the mass of the CPD to the perturbing mass of the planet accelerates the migration. Excluding a part of the Hill sphere is a very touchy parameter that may lead to an artificial suppression of the type III, runaway migration. In fact, the CPD is smaller than the Hill sphere. We recommend excluding no more than a 0.6 Hill radius and using a smooth filter. Alternatively, the CPD can be given the acceleration felt by the planet from the rest of the protoplanetary disc. The gas inside the Roche lobe of the planet should be very carefully taken into account in numerical simulations without any selfgravity of the gas. The entire Hill sphere should not be excluded. The method used should be explicitly given. However, no method is equivalent to computing the full selfgravity of the gas.
57 - J.C.B. Papaloizou 2021
Studies of planet migration derived from disc planet interactions began before the discovery of exoplanets. The potential importance of migration for determining orbital architectures being realised, the field received greater attention soon after th e initial discoveries of exoplanets. Early studies based on very simple disc models indicated very fast migration times for low mass planets that raised questions about its relevance. However, more recent studies, made possible with improving resources, that considered improved physics and disc models revealed processes that could halt or reverse this migration. That in turn led to a focus on special regions in the disc where migration could be halted. In this way the migration of low mass planets could be reconciled with formation theories. In the case of giant planets which have a nonlinear interaction with the disc, the migration should be slower and coupled to the evolution of the disc. The latter needs to be considered more fully to make future progress in all cases. Here we are primarily concerned with processes where migration is connected with the presence of the protopolanetary disk. Migration may also be induced by disc-free gravitational interactions amongst planets or with binary companions. This is only briefly discussed here.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا