ﻻ يوجد ملخص باللغة العربية
In this paper we present a multilayer particle deposition model on a random tree. We derive the time dependent densities of the first and second layer analytically and show that in all trees the limiting density of the first layer exceeds the density in the second layer. We also provide a procedure to calculate higher layer densities and prove that random trees have a higher limiting density in the first layer than regular trees. Finally, we compare densities between the first and second layer and between regular and random trees.
Consider an infinite tree with random degrees, i.i.d. over the sites, with a prescribed probability distribution with generating function G(s). We consider the following variation of Renyis parking problem, alternatively called blocking RSA: at every
We consider two variations of the discrete car parking problem where at every vertex of the integers a car arrives with rate one, now allowing for parking in two lines. a) The car parks in the first line whenever the vertex and all of its nearest nei
We investigate the distribution of the resonances near spectral thresholds of Laplace operators on regular tree graphs with $k$-fold branching, $k geq 1$, perturbed by nonself-adjoint exponentially decaying potentials. We establish results on the abs
In this article a multilayer parking system with screening of size n=3 is studied with a focus on the time-dependent particle density. We prove that the asymptotic limit of the particle density increases from an average density of 1/3 on the first la
We continue our study of the full set of translation-invariant splitting Gibbs measures (TISGMs, translation-invariant tree-indexed Markov chains) for the $q$-state Potts model on a Cayley tree. In our previous work cite{KRK} we gave a full descripti